Источники поступления меди в почву
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Введение

 

Среди множества проблем, стоящих в настоящее время перед человечеством одно из первых мест занимает проблема загрязнения окружающей среды различными химическими веществами - продуктами техногенеза, большая часть которых накапливается в почве. Среди загрязнителей значительное место занимают тяжелые металлы. Основным фактором остроты этой экологической ситуации остается высокая концентрация природозагрязняющих и природоразрушающих производств, преобладание таких экологически опасных отраслей промышленности, как черная и цветная металлургия, химическая и горнодобывающая промышленность, машиностроение и другие.

К тяжелым металлам относятся свыше 40 химических элементов таблицы Менделеева с атомными массами, превышающими 50 атомных единиц или химические элементы с удельным весом свыше 5г/см3. Не все ТМ представляют одинаковую опасность для живых организмов. По токсичности и способности накапливаться в пищевых цепях, лишь немногим более десяти элементов признаны приоритетными загрязнителями биосферы, в их число входит и медь. А также ртуть, свинец, цинк, кадмий, молибден, кобальт, никель, ванадий.

В связи с увеличивающимся загрязнением биосферы особый интерес и важное практическое значение имеет, с одной стороны, познание механизмов и закономерностей поведения и распределения ТМ в окружающей среде, а с другой, тот факт, что свыше 90% всех болезней человека прямо или косвенно связано с состоянием окружающей среды, которая является либо причиной возникновения заболеваний, либо способствует их развитию.

Челябинская область относится к числу регионов с критическим состоянием окружающей природной среды. Загрязнение ее территорий ТМ распределяется очень неравномерно, и медь является одним из основных загрязнителей. Уровень загрязнения превышает предельно допустимые концентрации металлов в почве (ПДК) в десятки и сотни раз (А.И. Левит, 2001).

В сложившейся ситуации актуален вопрос необходимости разработки мероприятий по восстановлению почв до состояния, пригодного для получения растениеводческой продукции, отвечающей санитарно-гигиеническим требованиям. Для этого на опытном участке Института агроэкологии нами был проведен полевой опыт по изучению приемов агрохимической мелиорации чернозема выщелоченного, загрязненного медью.

Цель исследований:

изучить эффективность различных приемов химической мелиорации чернозема выщелоченного, загрязненного медью в почве, их влияние на содержание подвижных форм меди в почве, урожайность сельскохозяйственных культур и качество продукции.

Задачи:

в полевом стационарном мелкоделяночном опыте сравнить различные химические мелиоранты по их действию на подвижные формы меди, урожайность сельскохозяйственных культур и содержание металла в полученной продукции;

на основе полученных данных в полевом стационарном опыте определить коэффициент экономической эффективности и срок окупаемости капитальных вложений.



Обзор литературы

 

Медь в природных объектах

 

Все основные циклы миграции ТМ в биосфере (водные, атмосферные, биологические) начинаются в почве, потому что в ней происходит мобилизация металлов и образование различных миграционных форм.

По определению И.В. Синявского (2001) почва как один из главных объектов загрязнения - сложная полидисперсная система. Она обладает обменно-катионной поглотительной способностью, буферностью концентрации солей и величиной pH почвенного раствора. Тяжелые металлы при попадании в почву вступают в физические сорбционные процессы, химические реакции с элементами почвенного раствора и в физико-химические обменные реакции почвенного поглощающего комплекса.

Почва имеет ведущее значение в производстве сырья для многих видов промышленности, продуктов питания и кормов для сельскохозяйственных животных. В основу нормирования таких загрязняющих веществ, какими являются ТМ, положен принцип, допускающий возможность их поступления в количествах, безопасных для человека и окружающей среды. Почвы, в которых содержание ТМ превышает фоновое, но не является опасным для здоровья человека, следует считать слабозагрязненными (В.Б. Ильин, 1991). Фоновое содержание ТМ в почвах можно считать исходным их количеством, естественным уровнем загрязнения. На черноземах выщелоченных валовое фоновое содержание меди составляет в пахотном горизонте 62 мг/кг, а в слое 0-10 возрастает до 140 мг/кг (А.П. Козаченко, 1999). Под предельно допустимыми количествами ТМ в почве следует понимать такую их концентрацию, которая при длительном воздействии на почву и произрастающие на ней растения не оказывает патологических изменений или аномалий в ходе биологических процессов и не приводит к накоплению токсичных элементов в возделываемых культурах, а, следовательно, и в продукции (О.А. Соколов, В.А. Черников, 1999). ПДК меди в почве 3 мг/кг.

 

Поступление меди в растения

Медь относится к числу микроэлементов, необходимых для жизнедеятельности растений. Она играет значительную роль в фотосинтезе, дыхании, перераспределении углеводов, восстановлении и фиксации азота, метаболизации протеинов. Отмечается большое влияние меди на проницаемость для воды сосудов ксилемы, а следовательно, и баланс влаги. Кроме того, этот элемент контролирует образование ДНК и РНК, его дефицит заметно тормозит репродуцирование растений.

По данным Н.А. Черных и др. (1999) содержание меди в растениях незагрязненных областей колеблется от 1 до n10 мг/кг сухой массы. При этом диапазон концентраций данного элемента в зерне злаковых составляет 1,3-10,3 мг/кг. Более высокие концентрации меди в органогенном горизонте отрицательно сказываются на росте и развитии сельскохозяйственных культур.

Одной из причин токсичности этого металла является то, что медь относится к числу элементов, интенсивно накапливающихся в растениях. В результате этого у растений возникают симптомы отравления: хлороз листьев, слабое развитие корневой системы, происходит повреждение тканей, изменение проницаемости клеточных мембран и ингибирование процессов фотосинтеза, замедляется прорастание семян (И.В. Синявский, 2001).

Тяжелые металлы поступают в почву в форме различных соединений (карбонатов, оксидов) с ограниченной растворимостью. Поэтому только часть из них может быть усвоена растениями. Для растений представляет опасность так называемая доступная форма элемента, которая может быть усвоена непосредственно через корневую систему. Доступными считаются те соединения, которые переходят в вытяжку 2М азотной кислоты или 1Н раствор соляной кислоты. Именно эти формы ТМ поступают из почвы в растения и оказывают токсическое действие.

Итак, исходя из публикаций О.А. Соколова (1999) главный путь поступления ТМ, в частности меди, в растения - это адсорбция корнями. Поглощение этих химических элементов корнями растений включает следующие этапы: преодоление пектоцеллюлозной мембраны клеточной оболочки, затем прохождение через плазмалемму, цитоплазму и тонопласт (вакуолярная мембрана). Этот путь связан с прохождением ионов ТМ через поры мембраны по градиенту концентрации, прохождением через поры мембраны с потоком растворителя, липоидной диффузией, поступлением с участием переносчиков, обменной диффузией, активным метаболическим переносом ТМ и никоцитозом. Мембраны, обладая биокаталитической активностью, осуществляют перенос ТМ. Пассивная диффузия составляет только 2-3% от всего количества усвоенных элементов.

Основные пути поступления ТМ в растения - апоплазматический и симплазматический. Апоплазматический путь осуществляется по свободному пространству клеточных оболочек и межклетников по принципу диффузии и потока воды с растворенными в ней ТМ. Поступление химических элементов в растения по этому пути возрастает с повышением их содержания в почвенном растворе.

Апоплазматическим путем ионы металлов поступают преимущественно в вегетативные части растений. Симплазматический путь поступления ТМ между клетками по плазмодесмам носит избирательный характер и способствует поступлению ионов металлов в репродуктивные органы растений.

Поступление ТМ в растительные организмы происходит не только через корни. Существует еще один путь - поглощение металлов через листовую поверхность. При этом растворенная пыль, содержащаяся в атмосфере вследствие интенсивного развития промышленности и автотранспорта, способна проникать как прямо в устьица, так и диффундировать через покровные ткани листовой пластинки. При этом скорость проникновения элементов в организм зависит от толщины кутикулы.

Поступление ТМ в растения обусловлено влиянием множества факторов, важнейшими из которых являются: свойства почв и динамика почвенных процессов, химические свойства металлов, состояние и трансформация их соединений, физиологические особенности растений (Н.А. Черных, 1999).

 

Условия проведения опыта

 

Экспериментальная часть

 

Характеристика мелиорантов

 

В опыте использовали глауконит Усть-Багарякского месторождения (Челябинская область) следующего химического состава: Si2 - 52,89; Al2O3 - 11,83; Fe2O3 - 16,74; MnO - 0,03; MgO - 4,31; СaO - 0,82; K2O - 8,57 и Na2O - 0,14%. Удельный вес глауконита колеблется от 2,3 до 2,9 г/см3. Цвет от светло-, темно-зеленого или почти черного. Используемый в опыте глауконит имел зеленовато-серый цвет. Емкость катионного обмена природных глауконитов колеблется в пределах 250-350 мг-экв. на кг минерала. Используемый в опыте концентрат глауконита имел емкость обмена 450-470 мг-экв. /кг. Как показали лабораторные исследования, опытный образец минерала обладал высокой адсорбционной способностью относительно меди - 781,2 ± 7,5 мг/кг навески. Степень извлечения из кислых растворов 90%, из основных - 84%.

Глауконит, используемый в опыте, характеризуется малым содержанием тяжелых металлов: Cu -5,4; Zn - 38,1; Pb -1,6; Cd - 0,78; Cr - 69,2 и Ag - 13,6 мг на кг, реакция солевой вытяжки - pH 4,8, валовое содержание азота (N) 0,13%, фосфора (P2O5) - 0,09% и калия (К2О) - 1,575.

Для проведения известкования также использовали местный материал - известь, производимую в АО "Мечел" из известняков Сибайского и Тургоякского месторождений. Мелиорант имеет влажность менее 2%, содержит только следы вредных примесей и 97,1% CaCO3. Эффективность данного мелиоранта повышается с уменьшением размера его частиц. Известь является основным материалом, используемым на всех кислых почвах под различные сельскохозяйственные культуры.

Фосфоритная мука представляет собой размолотые природные фосфаты или продукты их обогащения без какой-либо химической переработки. Это порошок серого цвета разных оттенков. Фосфор в фосфоритной муке представлен неусвояемым растениями трехкальциевым фосфатом Ca (PO4) 2.

Растения могут использовать фосфоритную муку только при внесении ее в кислую почву, где под влиянием почвенной кислотности фосфор постепенно переходит в растворимую и доступную для растений форму СаНРО4*2Н2О. Поэтому, чем меньше частицы фосфоритной муки и выше их удельная поверхность и площадь соприкосновения с почвой, тем интенсивнее будут проходить процессы перевода ее в доступное для растений состояние.

Вследствие медленного разложения фосфоритной муки в почве действие ее продолжается несколько лет. Данный мелиорант можно использовать в качестве основного удобрения на кислых почвах в двойной дозе по сравнению с суперфосфатом. Не рекомендуется применять на известкованных почвах и совместно с известью. Недостаток фосфоритной муки - ее пылящие свойства, что значительно затрудняет ее применение.

 

Содержание в почве подвижных форм меди

 

Внесение в почву сульфата меди привело к резкому увеличению содержания подвижных ее форм во всех вариантах опыта. По сравнению с контрольным вариантом, где содержание подвижных форм меди в горизонте 0-20 составило 0,44 мг/кг почвы, а в горизонте 20-40 - 0,58 мг/кг, во втором варианте содержание подвижных форм данного металла увеличилось по слоям в 219 и в 106 раз соответственно. Эти показатели превышают ПДК меди в почве (3 мг/кг) в слое 0-20 в 32 раза и в слое 20-40 в 20 раз.

По сравнению с исходным содержанием меди в почве (вариант 1) после загрязнения ее CuSO4·5H2O произошло увеличение содержания подвижных форм данного металла в среднем на 78,7%. После использования на загрязненных почвах трех сравниваемых мелиорантов, на основании данных таблицы 5 можно сказать, что наиболее активно связывал подвижные формы меди природный адсорбент - глауконит. Внесение 10 т/га обогащенного глауконита (без глины и примесей) уменьшило содержание подвижных форм меди на 24,2%. В свою очередь, внесение 5 т/га извести позволило снизить содержание загрязнителя на 8,8%, а при использовании фосфоритной муки (5 т/га) такого же эффекта удалось добиться всего на 7,6%.

И все-таки не один из применяемых мелиорантов при таком высоком уровне загрязнения почвы медью не смог обеспечить значительного уменьшения подвижности металла. Из таблицы 5 видно, что содержание подвижных форм меди во всех вариантах превосходит ПДК. Таким образом, применение даже таких активных химических мелиорантов, как глауконит, известь, фосфоритная мука не может обеспечить полную химическую детоксикацию тяжелых металлов. Поэтому необходимо исключать выброс тяжелых металлов в окружающую среду, по средствам создания замкнутых циклов производства.

 

Таблица 5 - Влияние мелиорантов на содержание в почве подвижных форм меди, мг/кг (среднее за три года)

Вариант

Состав

Содержание в слое

Изменения относительно

0-20

20-40

0-40

1 вар-та

2 варианта

мг/кг мг/кг %
1. Почва 0,44 0,58 0,51 - -78,69 -
2. Почва + Сu 96,63 61,78 79, 20 +78,69 - 100
3. Почва + Сu + глауконит,10 т/га 76,60 43,38 60,00 +59,49 -19,2 75,8
4. Почва + Сu + известь, 5 т/га 83,70 58,2 72, 20 +71,69 -7,0 91,2
5. Почва + Сu + фосфоритная мука, 5 т/га 87,28 59,15 73, 20 +72,69 -6,0 92,4

 

Содержание меди в продукции культур севооборота

 

Не смотря на то, что применяемые мелиоранты снизили содержание доступных растениям форм меди в почве, в тест-культурах происходит аккумуляция тяжелых металлов. Наши исследования подтверждают это. Так, в среднем за годы проведения опыта содержание меди в продукции исследуемых культур, на варианте с загрязнением почвы тяжелыми металлами, значительно превысило природный показатель (МДУ 30 мг/кг). В биомассе яровой пшеницы содержание меди увеличилось почти в 173 раза, ячменя - в 17 раз, овса - в 14раз.

Как показывают расчетные данные, приведенные в таблице 8, при использовании мелиорантов уровень содержания меди в продукции сельскохозяйственных культур снизился до максимально допустимого. Наилучшее мелиорирующее действие наблюдалось в вариантах с внесением 10 т/га глауконита. В данном случае содержание меди в зерне пшеницы и ячменя снизилось примерно на 38 мг/кг, а в зерне овса - на 30,7 мг/кг. Содержание загрязнителя в соломе тест-культур снизилось еще больше и составило на пшенице всего 31% относительно второго варианта; на ячмене и овсе 36,5% и 37,4% соответственно.

Содержание меди в вариантах, мелиорированных известью и фосфоритной мукой выше, чем при применении глауконита. Причем загрязнителя в соломе всех исследуемых культур больше, чем в зерне. Действие извести и фосфоритной муки не привело к снижению меди в зерне и соломе ячменя до максимально допустимого уровня.

Не смотря на то, что применяемые мелиоранты в достаточной степени снижают содержание меди в зерне и соломе возделываемых культур, данную продукцию не рекомендуется использовать для продовольственных целей, так как загрязнение почвы было очень высокое. Зерно будет приемлемо на зернофураж, а солома, как грубый корм для скота.



Охрана труда

 

Охрана природы

 

Интенсивное промышленное и сельскохозяйственное использование природных ресурсов вызвало существенное изменение циклов большинства химических элементов, в том числе и тяжелых металлов. Изменились направления и темпы миграции данных элементов, переместились зоны их выноса и накопления.

Уровень промышленного загрязнения определяется мощностью предприятий-загрязнителей, продолжительностью их действий и системой очистительных сооружений. Зона существенного загрязнения почв тяжелыми металлами в окрестностях промышленных предприятий занимает территорию с радиусом примерно 10 км и гораздо большей протяженностью - примерно 20-30 км в направлении господствующих ветров.

Источником увеличения концентрации ТМ в почве могут быть также естественные процессы выветривания материнских пород, обогащенных тем или иным металлом. А из антропогенных факторов загрязнения кроме выбросов промышленных предприятий еще и выхлопные газы транспортных средств, применение для орошения сточных вод, технического и природного ила (в качестве удобрения), использование пестицидов, удобрений и мелиорантов (Д.С. Орлов, 2002).

К наиболее токсичным металлам относятся Со, Ni, Cu, Zn, Sn, Fe, Pb, Ag, Cd, Hg. Как видно, к этой группе относятся и такие металлы, для которых доказана положительная физиологическая активность в метаболических процессах. Например, медь является микроэлементом, необходимым для жизнедеятельности растений. Однако, высокие ее концентрации в органогенном горизонте отрицательно сказываются на росте и развитии сельскохозяйственных культур.

В нормальной почве микроэлементы находятся в составе преимущественно минералов, органического вещества и почвенного поглощающего комплекса, а в техногенных выбросах - в форме оксидов, сульфидов, карбонатов и даже в виде микроскопических капель металлов. Нормальное распределение микроэлементов в почвах характеризуется увеличением их содержания сверху вниз, от поверхности к почвообразующей породе. При техногенном загрязнении, наоборот, максимальное содержание элементов-загрязнителей отмечено в самом поверхностном слое: на целине и в лесу - в слое 0-5 (10) см, на пашне - в пахотном слое.

Почвы являются природными накопителями тяжелых металлов в окружающей среде и основным источником загрязнения сопредельных сред, включая высшие растения. ТМ находятся в почве в виде различных химических соединений. По мере увеличения их содержания в почве, происходит насыщение растительных тканей данными элементами. При высоких уровнях загрязнения почв, концентрации металлов в растениях могут возрастать в десятки и сотни раз (Н.А. Черных и др., 1999).

Для ТМ не существует механизмов самоочищения - они лишь перемещаются из одного природного резервуара в другой, взаимодействуя с различными категориями живых организмов, и повсюду оставляя негативные последствия этого взаимодействия.

Основным мероприятием по защите почв от загрязнения ТМ является совершенствование технологий промышленной деятельности на основе создания замкнутых систем, обеспечивающих полное прекращение выбросов токсических веществ в окружающую среду.

Реабилитация уже загрязненных почв предусматривает следующие мероприятия (В.Т. Граковский, С.Е. Сорокин, С.А. Фрид, 1994):

выбор способа использования загрязненных земель;

фитосанацию;

перемещение и удаление загрязнителей;

регулирование подвижности и трансформации ТМ в почве, путем их перевода в недоступное для растений состояние - агрохимическая мелиорация;

регулирование соотношения биогенных элементов в почве;

рекультивацию, направленную на восстановление продуктивности сильнозагрязненных почв (отвалы металлургических предприятий, шламохранилища и др.), включающую в себя работы по восстановлению или созданию нарушенного ландшафта.

Таким образом, из описанных приемов, обеспечивающих реабилитацию почв, загрязненных ТМ, наибольшего эффекта позволяет добиться агрохимическая мелиорация, которая осуществляется путем известкования, фосфоритования, внесения органических удобрений (перегноя, торфа), природных сорбентов (вермикулита, монтмориллонита, глауконита и др.) и всех других веществ, после обработки которыми ТМ почвы переходят в труднорастворимое состояние. Наиболее часто используются известь, фосфоритная мука и растворимые фосфорные удобрения, природные сорбенты - глауконит, вермикулит и др. Они обеспечивают снижение подвижности ТМ путем перевода их в нерастворимую форму и состояние прочного необменного поглощения (И.В. Синявский, 2001).

Для полной химической дезактивации тяжелых металлов требуются неоднократное внесение мелиорантов, большие материальные, энергетические и финансовые затраты. Это еще раз доказывает, что мероприятия по улучшению и стабилизации экологической ситуации на территориях, прилегающих к промышленным центрам и крупным предприятиям, должны быть направлены на создание замкнутых циклов производства, полностью исключающих выброс тяжелых металлов в окружающую среду.



Выводы

 

1. Результаты полевого опыта показали, что для химической дезактивации могут быть использованы глауконит, известь и фосфоритная мука. Наилучшее мелиорирующее действие наблюдалось в вариантах, где использовалось 10 т/га глауконита. При этом наблюдалось самое низкое содержание меди в почве и продукции.

2. Результаты проведенных исследований показали, что почвы, загрязненные тяжелыми металлами, трудно поддаются мелиорации. Для полной химической дезактивации тяжелых металлов требуется неоднократное внесение мелиорантов, большие материальные, энергетические и финансовые затраты. Это еще раз доказывает, что мероприятия по улучшению и стабилизации экологической обстановки должны быть направлены в первую очередь на создание замкнутых циклов производства, полностью исключающих выброс тяжелых металлов в окружающую среду.

3. Наиболее экономически эффективным оказался глауконит, как мелиорант, имеющий наибольший коэффициент экономической эффективности и наименьший срок окупаемости по сравнению с другими мелиорантами.



Список литературы

 

1. Агротехногенное загрязнение почвенного покрова тяжелыми металлами: источники, масштабы, рекультивация / Большаков В.А., Краснова Н.М., Борисочкина Т.И. и др. - М.: Упромирафиздат Мособместполкома, 1993. - 91с.

2. Артамонов В.И. Растения и чистота природной среды. - М.: Наука, 1996. - 172с.

3. Вредные химические вещества. Неорганические соединения элементов I-IV групп. Справочник / Бандман А.Л., Волкова Н.В., Грехова Т.Д. и др. - Л.: Химия, 1988. - 512с.

4. Граковский В.Г., Содокин С.Е., Фрид А.С. Санация загрязненных почв и рекультивация нарушенных земель в России // Почвоведение. 1994. №4. С.121-128

5. Ильин В.Б. Тяжелые металлы в системе почва-растение. - Новосибирск: Наука, 1991. - 151с.

Введение

 

Среди множества проблем, стоящих в настоящее время перед человечеством одно из первых мест занимает проблема загрязнения окружающей среды различными химическими веществами - продуктами техногенеза, большая часть которых накапливается в почве. Среди загрязнителей значительное место занимают тяжелые металлы. Основным фактором остроты этой экологической ситуации остается высокая концентрация природозагрязняющих и природоразрушающих производств, преобладание таких экологически опасных отраслей промышленности, как черная и цветная металлургия, химическая и горнодобывающая промышленность, машиностроение и другие.

К тяжелым металлам относятся свыше 40 химических элементов таблицы Менделеева с атомными массами, превышающими 50 атомных единиц или химические элементы с удельным весом свыше 5г/см3. Не все ТМ представляют одинаковую опасность для живых организмов. По токсичности и способности накапливаться в пищевых цепях, лишь немногим более десяти элементов признаны приоритетными загрязнителями биосферы, в их число входит и медь. А также ртуть, свинец, цинк, кадмий, молибден, кобальт, никель, ванадий.

В связи с увеличивающимся загрязнением биосферы особый интерес и важное практическое значение имеет, с одной стороны, познание механизмов и закономерностей поведения и распределения ТМ в окружающей среде, а с другой, тот факт, что свыше 90% всех болезней человека прямо или косвенно связано с состоянием окружающей среды, которая является либо причиной возникновения заболеваний, либо способствует их развитию.

Челябинская область относится к числу регионов с критическим состоянием окружающей природной среды. Загрязнение ее территорий ТМ распределяется очень неравномерно, и медь является одним из основных загрязнителей. Уровень загрязнения превышает предельно допустимые концентрации металлов в почве (ПДК) в десятки и сотни раз (А.И. Левит, 2001).

В сложившейся ситуации актуален вопрос необходимости разработки мероприятий по восстановлению почв до состояния, пригодного для получения растениеводческой продукции, отвечающей санитарно-гигиеническим требованиям. Для этого на опытном участке Института агроэкологии нами был проведен полевой опыт по изучению приемов агрохимической мелиорации чернозема выщелоченного, загрязненного медью.

Цель исследований:

изучить эффективность различных приемов химической мелиорации чернозема выщелоченного, загрязненного медью в почве, их влияние на содержание подвижных форм меди в почве, урожайность сельскохозяйственных культур и качество продукции.

Задачи:

в полевом стационарном мелкоделяночном опыте сравнить различные химические мелиоранты по их действию на подвижные формы меди, урожайность сельскохозяйственных культур и содержание металла в полученной продукции;

на основе полученных данных в полевом стационарном опыте определить коэффициент экономической эффективности и срок окупаемости капитальных вложений.



Обзор литературы

 

Медь в природных объектах

 

Все основные циклы миграции ТМ в биосфере (водные, атмосферные, биологические) начинаются в почве, потому что в ней происходит мобилизация металлов и образование различных миграционных форм.

По определению И.В. Синявского (2001) почва как один из главных объектов загрязнения - сложная полидисперсная система. Она обладает обменно-катионной поглотительной способностью, буферностью концентрации солей и величиной pH почвенного раствора. Тяжелые металлы при попадании в почву вступают в физические сорбционные процессы, химические реакции с элементами почвенного раствора и в физико-химические обменные реакции почвенного поглощающего комплекса.

Почва имеет ведущее значение в производстве сырья для многих видов промышленности, продуктов питания и кормов для сельскохозяйственных животных. В основу нормирования таких загрязняющих веществ, какими являются ТМ, положен принцип, допускающий возможность их поступления в количествах, безопасных для человека и окружающей среды. Почвы, в которых содержание ТМ превышает фоновое, но не является опасным для здоровья человека, следует считать слабозагрязненными (В.Б. Ильин, 1991). Фоновое содержание ТМ в почвах можно считать исходным их количеством, естественным уровнем загрязнения. На черноземах выщелоченных валовое фоновое содержание меди составляет в пахотном горизонте 62 мг/кг, а в слое 0-10 возрастает до 140 мг/кг (А.П. Козаченко, 1999). Под предельно допустимыми количествами ТМ в почве следует понимать такую их концентрацию, которая при длительном воздействии на почву и произрастающие на ней растения не оказывает патологических изменений или аномалий в ходе биологических процессов и не приводит к накоплению токсичных элементов в возделываемых культурах, а, следовательно, и в продукции (О.А. Соколов, В.А. Черников, 1999). ПДК меди в почве 3 мг/кг.

 

Источники поступления меди в почву

Значительные количества выбросов промышленных предприятий, содержащих высокие концентрации ТМ и токсичных веществ в атмосферу, ведут, в свою очередь, к ежегодному попаданию в почву более 960 тыс. т. оксидов и более 1,4 млн. т. активных химических веществ. Следствием этого является не только снижение плодородия почв, но и создание условий, наряду с агротехническими нарушениями, для образования ежегодно до 1,4 млн. га эрозионных и эрозионноопасных земель.

Поступление тяжелых металлов, в частности меди, в почву вследствие техногенного рассеяния осуществляется разнообразными путями. По данным Д.С. Орлова, Л.К. Садовниковой (2002) важнейшим из них является выброс при высокотемпературных процессах: черной и цветной металлургии, обжиге цементного сырья, сжигании минерального топлива. Воздушными потоками выбросы переносятся на большие расстояния (до 10 км), причем большая их часть выпадает на расстоянии 1-3 км от эпицентра. Ежегодно выбросы специфических загрязняющих веществ составляют 750-800 т, из них меди - 95т (А.П. Козаченко, 1999). Надо сказать, что техногенная доля меди в окружающей среде составляет примерно 75%.

Кроме того, источником загрязнения почвы медью может служить орошение ее водами с повышенным содержанием этого металла. Согласно публикации комплексного доклада Челябинского областного центра по гидрологии и мониторингу окружающей среды (2000) река Миасс - одна из крупнейших водных артерий Челябинской области. Ниже города Миасса под влиянием промышленных и хозяйственно-бытовых сточных вод качество воды р. Миасс существенно ухудшается. Содержание в ней меди составляет от 2,5 до 3,0 ПДК.

Загрязнение земель медью происходит не только за счет выбросов предприятий промышленности, но и за счет веществ, потребляемых самим сельским хозяйством, например, пестицидов. Такое загрязнение называется агрогенным (А.И. Левит, 2001). Пестицидами называются химические вещества, которые защищают растения от сорняков и вредителей, стимулируют их рост, защищают от болезней. Являясь важнейшим средством сохранения и приумножения урожаев, они в то же время представляют значительную угрозу для окружающей природы. Их остатки загрязняют почву, снижают биологическую активность, накапливаются в листьях и стеблях растений, вызывая их повреждение (А.И. Левит, 2001).

Согласно публикациям А.Д. Бандман, Г.А. Гудзовского, Л.С. Дубейковской и др. (1988) многие соединения мадии применяются в качестве пестицидов в чистом виде, как оксид меди (I) и сульфат меди (II), или в составе сложных препаратов. Гидроксидхлорид меди (II) применяется с добавкой сульфитно-спиртовой барды и декстрина. Фунгицидный препарат купрозан содержит 37,5% этого соединения, а купронил - 35% гидрокарбоната меди (II).

По мнению А.И. Левит (2001) опасное загрязнение земель происходит и в тех случаях, когда нарушаются нормы хранения или запасы ядохимикатов, содержащих в своем составе медь, выбрасываются, складируются в неположенных местах - близ дорог, водоемов.

Мощным источником загрязнения почв медью также могут являться и агротехнические мероприятия, направленные на повышение урожайности сельскохозяйственных культур. Например, необходимость применения минеральных удобрений одновременно с повышением урожайности может вызвать загрязнение почв тяжелыми металлами, в частности медью, вследствие аккумуляции избыточного количества удобрений в почвенном профиле при передозировке или неравномерном внесении. Подобный эффект может наблюдаться при бесконтрольном использовании в качестве минеральных удобрений отходов различных отраслей промышленности (О.С. Орлов, 2002).

По данным В.И. Артамонова (1996) избыточное внесение экскрементов животных в почву ведет к увеличению содержания в ней подвижной меди.

Итак, критический уровень, т.е. величина, при которой поступление ТМ в окружающую среду не приводит к накоплению выбросов в почве составляет для меди 3-30 кг/км2 в год. Загрязненная почва, в которой содержание меди превышает допустимый уровень, теряет четкую структуру, общая порозность ее уменьшается. Разрушение структуры приводит к нарушению водопроницаемости, ухудшению вводно-воздушного режима (А.Д. Бандман и др., 1988).

 

Дата: 2019-07-24, просмотров: 191.