Длительное напряжение, просоциальность и антисоциальность
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

При переживании длительного стресса миндалина обрабатывает эмоциональную информацию быстро, но не точно, мешает работе гиппокампа, нарушает согласие в лобной коре; мы становимся боязливыми, меланхоличными, неадекватно оцениваем риск, действуем автоматически вместо того, чтобы учесть новую информацию[372]. Это удобренная почва для проявлений импульсивной агрессии; стресс или кратковременное введение глюкокортикоидов усиливают подобную агрессию и у грызунов, и у людей. Здесь нужно иметь в виду два аспекта: а) стресс и глюкокортикоиды не генерируют агрессию как таковую, а увеличивают чувствительность к социальным побудителям агрессии; б) этот эффект проявляется ярче у тех, кто предрасположен к агрессии. Как мы увидим в следующей главе, в картине стресса длительностью в недели и месяцы нюансы стираются.

Но есть и еще одна причина, в силу которой стресс усиливает агрессию – дело в том, что агрессия сама снижает стресс (и это особенно печально). Если крысу ударить током, то у нее подскакивает кровяное давление и уровень глюкокортикоидов; а если это проделывать многажды, то возникает риск «незаживающего» стресса. Кое-что помогает смягчить шоковый эффект: бегать в колесе, есть, грызть деревяшку от досады. Но самое эффективное средство для амортизации шока – это покусать другую крысу. Феномен смещения агрессии на почве стресса (или отчаяния) наблюдается у многих видов животных. У павианов, например, примерно половина агрессивных действий происходит именно поэтому: самец высокого ранга проигрывает в драке и начинает гонять какого-нибудь юного самца. Тот, в свою очередь, кусает самку, а самка нападает на детеныша. Согласно моим исследованиям, чем чаще у самцов происходит смещение агрессии после поражения, тем ниже у них уровень глюкокортикоидов (понятно, что сравнивались самцы одного ранга)[373].

Люди отточили искусство перенесения агрессии, или вымещения раздражения, на других; вспомните, насколько подскакивает количество случаев избиения жен и детей во время экономического кризиса. Вот результаты исследования о домашнем насилии и футболе. Если местная команда неожиданно проигрывает, то после этого количество случаев мужского насилия в семьях увеличивается на 10 % (и никакого процентного увеличения, если команда выиграла или если проигрыш был прогнозируемым). А если ставки на выигрыш высоки, то картина еще усугубляется: насилие увеличивается на 13 %, если команда проигрывает в матче на выбывание, и на 20 % – если команда уступает в финальной игре[374].

Не так уж много известно о нейрофизиологии смещения агрессии и смягчении ею стресс-реакции. Я полагаю, что нападение на низшего по рангу активирует дофаминергические контуры в системе награды, что наверняка погасит выделение КРГ[375][376]. Слишком часто жизнь учит: лучше мы, чем нас.

Продолжим список неприятных известий: из-за стресса мы становимся эгоистами. В одном из исследований респондентов ставили в социально-напряженную или социально-нейтральную ситуацию и после этого предлагали решать морально-этические дилеммы[377]. Некоторые дилеммы несли низкую эмоциональную нагрузку («У прилавка в магазине пожилой человек лезет без очереди. Вы будете протестовать?»), другие были, наоборот, эмоционально нагружены («Вы встретили любовь всей вашей жизни, но у вас жена и дети. Вы уйдете из семьи?»). Результаты этого эксперимента показали, что когда требовалось разрешить эмоционально тяжелую дилемму, то стресс заставлял участников эксперимента давать более эгоистические ответы; в ситуации слабой эмоциональной нагрузки этот эффект не выявился. Чем выше поднимался уровень глюкокортикоидов, тем эгоистичнее становились ответы. Одновременно стресс ослабил альтруистические склонности людей, если дело касалось личных (но не общих) моральных решений[378].

Итак, мы имеем еще один эндокринный эффект, зависящий от обстоятельств: стресс делает людей эгоистами, но только если ситуация эмоционально насыщенна и касается человека лично[379]. Это напоминает другой пример ослабленного функционирования лобной коры: вспомним главу 2, где описаны люди с поврежденной лобной корой, достаточно здраво рассуждающие о проблемах других, но чем более личной и эмоциональной становится проблема, тем более ущербными оказываются их суждения.

Обижать более слабого, чтобы почувствовать себя лучше, или думать только о своих нуждах – это не слишком сочетается с умением сопереживать другому. А действительно, ослабляет ли стресс способность к эмпатии? Казалось бы, да – и у людей, и у мышей. Поразительная работа Джеффри Могила из Университета Макгилла, опубликованная в журнале Science в 2006 г., показала зачатки эмпатии у мышей: у зверька снижается болевой порог, когда рядом другая мышка испытывает боль, но такой – сопряженный – эффект наблюдается только в том случае, если другая мышка является знакомой – соседкой по клетке[380].

Эта работа повлекла за собой следующую, которую мы провели с группой Могила совместно. Для нового исследования использовалась та же схема экспериментов, но с учетом того, что в присутствии незнакомой особи мышь, как правило, испытывает стресс. Поэтому мы искусственно заблокировали выделение глюкокортикоидов (сняли стресс), и в опытах с определением болевого порога мышь показывала ту же «болевую эмпатию» к незнакомой мыши, что и к знакомой соседке. Другими словами, глюкокортикоиды ограничивают группу «своих», которые «достойны» эмпатии. Тот же результат наблюдался и у людей: эмпатия к чужаку, который испытывал боль, не появлялась, пока у испытуемых не снижали уровень глюкокортикоидов (например, вводя участникам эксперимента препараты короткого действия или давая им возможность пообщаться перед экспериментом). Вспомним главу 2 – там было описано, как передняя поясная кора участвует в формировании «болевой» эмпатии. Готов поспорить, что в той части мозга глюкокортикоиды проделали с нейронами нечто изнуряющее, притупляющее.

Как мы выяснили, продолжительный стресс воздействует на поведение весьма неприятным образом. И все же при определенных обстоятельствах в моменты напряжения мы проявляем лучшее, на что способны. Работа Шелли Тейлор из Калифорнийского университета в Лос-Анджелесе указывает на то, что эффект «бей или беги» – это типичная реакция на стресс у мужчин и вдобавок литература о стрессе изучает в основном мужчин и написана мужчинами[381]. У женщин часто все по-другому. Тут Тейлор продемонстрировала, на что способны дамы, когда требуется переспорить старых добрых ученых мужей: она доказала, что женская стресс-реакция выглядит совсем не агрессивно. Ее скорее можно описать словами «приголубь и приветь» – т. е. заботься о младших и ищи социального признания (дружбы). В этом проявляется поразительное различие в способах мужчин и женщин справиться со стрессом, а женский подход «приголубь и приветь», вероятнее всего, указывает на окситоциновый компонент регуляции стрессового ответа.

Понятно, что все гораздо сложнее, чем упрощенная схема «мужчины – бей/беги, женщины – приголубь/приветь». Нередко встречаются примеры поведения прямо противоположные: всех самцов игрунок, а не только «женатых», стресс зачастую побуждает к большей социальности, а самки очень даже способны на агрессивные поступки. И вообще: у нас есть Махатма Ганди и Сара Пэйлин[382],[383]. Как получается, что некоторые люди настолько не вписываются в гендерные схемы? Это отчасти разъясняется в следующих главах.

Стресс нарушает интеллектуальную деятельность, самоконтроль, регуляцию эмоций, процесс принятия решений, способность к эмпатии и общению. И последнее. Как мы помним из главы 2, лобная кора заставляет нас выбирать трудный путь вместо привычного легкого, если трудный видится более правильным; между тем определение, что правильно, отдается полностью на наше усмотрение. То же самое и со стрессом. Считается, что влияние стресса на принятие решения отрицательно, но это только с точки зрения нейрофизиологии. Так, в моменты стресса врачи скорой помощи могут начать действовать по привычной в обычных условиях схеме (ведь для экстремальных ситуаций у них тоже есть автоматические действия) и потому не успеют спасти пациенту жизнь. Это плохо. Но в момент стресса будет автоматически повторять проверенные стратегии и психопат-военачальник, а потому не сможет «эффективно» провести «зачистку» деревни. И это уже хорошо.

 

 

Развенчание мифа: алкоголь

 

Обсуждая биологические процессы, происходящие за несколько минут или часов до поведенческого акта, никак нельзя обойти влияние алкоголя. Все считают, что алкоголь снимает запреты и человек становится более агрессивным. Это неверно – и мы уже знаем почему. Алкоголь вызывает агрессию, только если: а) индивид предрасположен к агрессии, как, например, мыши с низким уровнем серотонина в лобной коре или мужчины с вариантом гена окситоцинового рецептора, менее восприимчивого к окситоцину; б) человек верит  , что алкоголь повышает агрессию, и это лишний раз демонстрирует, насколько мощно социальное обучение формирует биологию[384]. Алкоголь действует на всех по-разному. Кто не знает примеров экстравагантных свадеб в Лас-Вегасе, справляемых в состоянии алкогольной одури, которые на следующий день представляются уже совсем в другом, неприглядном виде.

 

Итоги и некоторые выводы

 

а) Гормоны – это хорошо. Они работают вкупе с нейромедиаторами, обеспечивая разновременные и разносторонние реакции от их действия. Эти реакции создают многообразие поведения, которое и является главным предметом этой книги.

б) Зависимость агрессии от тестостерона намного меньше, чем принято считать. Индивидуальные колебания данного андрогена в пределах нормы не позволяют предсказывать, будет ли человек вести себя агрессивно, нарушать законы. Более того, чем особь изначально агрессивнее, тем меньше ей требуется добавлять тестостерона для агрессивного акта. И если уж тестостерону и отведена какая-то роль, то только в качестве «пособника» – сам по себе этот гормон не порождает агрессию. Он делает нас более восприимчивыми к факторам, ее запускающим, – особенно тех из нас, кто и так предрасположен к агрессии. Повышение уровня тестостерона, как мы выяснили, способствует агрессии только в обстоятельствах угрозы социальному статусу. Но если даже уровень гормона и подскакивает в такой ситуации, это не обязательно усиливает агрессию: он активирует любые из тех действий, которые помогают сохранить статус. В мире, где социальный статус поддерживается добрыми делами, тестостерон окажется самым «просоциальным» гормоном на свете.

в) Окситоцин и вазопрессин содействуют формированию связи матери и ребенка, а также моногамному поведению в парах, снижают тревогу и стресс, укрепляют доверие, упрочивают социальные группы, делают людей щедрее и общительнее. Однако ко всему этому прилагается огромное НО: гормоны способствуют просоциальности только по отношению к Своим. Когда дело касается Чужих, окситоцин и вазопрессин превращают нас в ксенофобов и этноцентристов. У окситоцина характер не «космополитичный» – у него местечковый характер.

г) Женская агрессия как средство защиты детей является обычно адаптивной реакцией и задействует эстроген, прогестерон и окситоцин. Важно помнить, что и во многих других эволюционно-адаптивных обстоятельствах самки проявляют агрессию. Такую реакцию обеспечивают присутствие андрогенов и сложные эндокринные хитрости, с помощью которых сигналы андрогенов получает «агрессивный», а не «материнский», «дружелюбный» участок мозга самки. Изменения в настроении и поведении в период месячных – физиологический факт (пусть даже и понимаемый схематично); патологизация этих изменений является социальной концепцией. И наконец, кроме редких крайних случаев, связь между ПМС и агрессией минимальна.

д) Длительный стресс имеет множество нежелательных последствий. Миндалина становится слишком возбудимой и задействует нейронные структуры, связанные с привычным поведением; страху легче научиться, чем разучиться. В автоматическом режиме мы обрабатываем эмоционально значимую информацию быстрее, но при этом жертвуем ее точностью. Функции лобной коры – рабочая память, самоконтроль, принятие решений, оценка риска, распределение приоритетных задач – становятся менее эффективными, уменьшается контроль лобной коры над миндалиной. Помимо того, мы становимся менее заботливыми, мы меньше сопереживаем. Снижение пролонгированного стресса идет на пользу во всех отношениях и нам, и окружающим.

е) Оправдание «я просто был под градусом» не извиняет агрессивные акты.

ж) В промежуток времени от нескольких минут до первых часов эффект гормонального воздействия зависит в основном от ситуации и является стимулирующим. Гормоны не определяют, не являются причиной, не руководят, не порождают поведенческого акта. Вместо этого они делают нас более восприимчивыми к социальным стимулам в эмоционально-значимых ситуациях, усиливают поведенческие тенденции и предрасположенности, соответствующие случаю. А откуда берутся эти предрасположенности и тенденции? Узнаем из следующих глав.

 

 

Глава 5

За недели и месяцы до…

 

Поступок совершен: курок нажат или рука прикоснулась к руке – и о смысле этих поступков можно судить только из их контекста. Но почему случилось именно так, а не иначе? Мы узнали, что за секунду до поступка из мозга к телу исходят определенные нервные импульсы, что за минуты и часы до этого определенные сенсорные стимулы вызывают возбуждения в мозге, а за часы и дни до поступка меняется чувствительность определенных частей мозга, потому что они подвергаются воздействию гормонов. А до того? Какие события, происходившие за дни и месяцы до поступка, предопределили его?

Глава 2 познакомила нас с пластичностью нейронов: самые разные события могут их менять. Меняются сила дендритного входа, аксонные холмики, которыми инициируются потенциалы действия, продолжительность рефрактерного периода. В предыдущей главе мы обсуждали, как тестостерон меняет возбудимость нейронов миндалины, а глюкокортикоиды снижают возбудимость нейронов префронтальной коры. И даже как прогестерон стимулирует ГАМК-ергические нейроны, снижающие возбудимость других нейронов.

На изменение пластичности такого рода требуется несколько часов. Мы теперь обратимся к другой пластичности, той, на которую уходят дни и месяцы. Дни и месяцы – это сколько? Это промежуток времени, в который уложились и Арабская весна, и Зима тревоги нашей[385], и Лето любви со всеми своими проблемами… В этот же промежуток укладываются и колоссальные изменения, которые затрагивают структуру мозга.

 

Нелинейное возбуждение

 

Начнем с малого. Как могут события, произошедшие месяц назад, спровоцировать изменения в сегодняшнем синапсе? Как синапс может вообще «запоминать»?

Когда нейробиологи в начале XX в. начали интересоваться сущностью памяти, они задавали этот вопрос по-другому, на макроуровне: как сам мозг может запоминать? Тут все очевидно: раз память хранится в мозге, в нейронах, то новая память требует и нового нейрона.

Эта идея с треском провалилась, когда было доказано, что у взрослых людей новые нейроны не образуются. Но с совершенствованием техники микроскопирования стала доступна для визуального наблюдения ошеломительная по сложности сеть ветвящихся дендритов и аксонных окончаний. Возможно ли, что новая память требует отращивания новой веточки на аксоне или дендрите?

А потом узнали про синапсы, и стала развиваться нейромедиаторология; тогда гипотеза о носителе новой памяти видоизменилась. Для новой памяти нужно сформировать новый синапс, т. е. новую связь между окончанием аксона и дендритным шипиком.

Вскоре и эта версия отправилась на свалку истории: тут постарался канадский нейробиолог Дональд Хебб, человек такой провидческой мудрости, что и сейчас, через почти 70 лет после опубликования его фундаментального труда «Организация поведения» (The Organization of Behaviour), нейробиологи покупают себе китайских болванчиков[386] с головой Хебба. Эта книга вышла в свет в 1949 г., в ней ученый предложил новую гипотезу, ставшую общепринятой на сегодняшний день. Для формирования нового воспоминания новые синапсы не нужны (и тем более новые нейроны или их отростки), а нужно лишь усилить уже существующие [387].

Как понимать слово «усилить» в данном случае? А понимать это нужно в контексте связи между нейронами. Если нейрон А связан синапсом с нейроном В , то после «усиления» потенциалу действия нейрона А проще вызывать потенциал действия в нейроне В . И связка данных событий, потенциалов, становится все теснее; это и есть «запоминание». «Усиление» в терминах клеточного строения означает, что волна возбуждения в дендрите распространяется дальше, подходя ближе к отстоящему аксонному холмику, месту выхода аксона.

В многочисленных исследованиях показано, что действие, раз за разом приводящее к повторению возбуждения в синапсе, «усиливает» его. И ключевую роль в этом процессе играет нейромедиатор глутамат.

Вспомним главу 2. В ней среди прочего говорилось о том, что возбуждающий нейромедиатор связывается с рецептором в постсинаптическом дендритном шипике. Как выяснилось, это влечет за собой открытие натриевого канала, а вслед за тем в клетке распространяется всплеск возбуждения.

Глутамат работает более изощренно, и это оказывается важно для процесса обучения. Сильно упрощенная схема примерно такова. Обычные дендритные шипики несут один тип рецепторов, но в тех, что связываются с глутаматом, таких рецепторов два типа. Первый тип – обычный, называется «non-NMDA-рецептор». При связывании этого рецептора с глутаматом все происходит классическим образом: небольшая порция глутамата запускает в клетку капельку натрия, и возбуждение чуточку подскакивает. Второй, NMDA-рецептор, действует нелинейно, по принципу порогового значения. В обычном случае он не отвечает на поступление глутамата. Не отвечает до тех пор, пока все новые и новые рецепторы non-NMDA не свяжутся со своими порциями глутамата и после этого в клетке окажется повышенное количество натрия. И вот тогда все рецепторы NMDA вдруг как активируются, отвечая на весь накопившийся глутамат! Все их ионные каналы открываются разом, и в результате клеточное возбуждение резко подскакивает.

В этом и состоит сущность обучения. На лекции лектор что-то говорит, а у слушателя в одно ухо влетает, в другое вылетает. Лектор повторяет свою мысль, а потом и другую ее сторону продемонстрирует. И если повторить ее несколько раз, то – ага! Вот оно! На слушателя снисходит озарение, ему все становится ясно. На синаптическом уровне это озарение заключается в том, что своими повторениями лектор заставил аксон потихоньку выделять глутамат; и вот момент настал: сработали рецепторы NMDA – и дендритные шипики внезапно получили новую информацию.

 

«Ага! Вот оно!» и настоящее запоминание

 

Но это только самое начало. Нужно ведь, чтобы явленная посреди лекции мысль удержалась хотя бы час, не говоря уже о том, чтобы дождаться в голове экзамена. Как же получается так, что этот всплеск возбуждения сохраняется, не сглаживается, а рецепторы NMDA – запоминают, т. е. в будущем при необходимости с легкостью активируются? Как это повышенное возбуждение становится долговременным?

И вот теперь самое время представить вам долговременную потенциацию (LTP – от англ . long-term potentiation). Впервые она была продемонстрирована Терье Лёмо из Университета Осло; ее суть в том, что первая вспышка активации NMDA вызывает длительное увеличение возбудимости синапса[388]. Над разгадкой секрета долговременной потенциации билось множество светлых голов. И выяснился следующий ключевой факт: NMDA-рецепторами открываются не натриевые каналы, а кальциевые; в клетку попадает именно кальций. В результате происходит целый ряд изменений, и вот некоторые из них:

а) Волна кальция приводит к вставке новых глутаматовых рецепторов в мембрану дендритного шипика. В результате нейрон легче откликается на появление глутамата[389].

б) Кальций меняет также и те глутаматовые рецепторы, которые уже находятся в мембране, на переднем фронте дендритного шипика. У каждого повышается чувствительность к глутаматовым сигналам[390].

в) Кальций запускает синтез определенных нейромедиаторов в шипике; эти нейромедиаторы выделяются в синаптическую щель и отправляются в обратном направлении , т. е. к окончанию аксона. Оказавшись на месте, они, когда в аксоне в будущем возникнет потенциал действия, увеличат выход глутамата.

 

Иными словами, долговременная потенциация выражается в том, что аксон со своей пресинаптической стороны кричит «ГЛУТАМАТ!» громче, а шипик со своей постсинаптической стороны слушает внимательнее.

Есть и другие механизмы долговременной потенциации. Ученые спорят, какой из механизмов главнее (склоняясь, как правило, к предмету своего изучения) в реальных процессах обучения. Что для обучения важнее – постсинаптические или пресинаптические трансформации: вот основная тема дебатов специалистов[391].

Пока обсуждалась долговременная потенциация, пришло время для следующего открытия, восстановившего равновесие во Вселенной. Речь идет о долговременной депрессии (LTD – от англ . long-term depression) – зависимом от опыта долговременном снижении синаптической возбудимости (любопытно, что механизмы LTD не являются просто повернутыми вспять механизмами LTP). Ее, LTD, нельзя считать и функциональной противоположностью LTP: долговременная депрессия не является основой забывания, она, скорее, обостряет сигнал, затушевывая лишние шумы.

И наконец, вот что: следует понимать, где долговременный, а где долгое время. Как мы говорили, одним из основополагающих механизмов LTP является трансформация рецепторов в сторону более чуткого реагирования на глутамат. Подобное преобразование сохраняется, пока работают рецепторы, измененные в ходе долговременной потенциации. Но продолжительность их жизни измеряется днями, за это время они накапливают дефекты из-за вредного действия радикалов кислорода, деградируют и заменяются на новые (такие процессы свойственны любым белковым молекулам в клетках). Поэтому изменения при долговременной потенциации каким-то образом передаются следующим поколениям рецепторов. А как еще восьмидесятилетние бабушки и дедушки могут помнить свой детский сад?

Все это прекрасно, но пока что мы говорили о запоминании некоторой явной информации, к примеру телефонного номера, т. е. о том, чем занимается гиппокамп. А нас больше интересует другое – как мы учимся бояться, контролировать себя, сочувствовать или даже относиться к кому-то с безразличием.

Синапсы, выделяющие глутамат, находятся не только в гиппокампе. Они, как и долговременная потенциация, присутствуют во всей нервной системе. Для многих исследователей, которые изучали LTP в гиппокампе, это явилось неприятным открытием: одно дело, когда Шопенгауэр читает Гегеля, а в это время в его гиппокампе происходит долговременная потенциация, и совсем другое, когда та же долговременная потенциация обнаруживается в спинном мозге при обучении тверку[392].

Тем не менее LTP происходит по всей нервной системе[393][394]. Например, при выработке условных рефлексов на боль долговременная потенциация затрагивает базолатеральную миндалину. Затем, при необходимости контролировать миндалину, LTP имеет место в лобной коре. Именно так дофаминовая система учится связывать стимул с наградой – например, у наркоманов то конкретное место, где они получали наркотик, немедленно вызывает страстное желание.

А теперь добавим к этой системе гормоны, переведя таким образом наши идеи о стрессе на язык нейронной пластичности. Небольшой, проходящий стресс (а мы считаем его хорошим, стимулирующим) порождает в гиппокампе долговременную потенциацию, тогда как продолжительный стресс обрывает ее и порождает там долговременную депрессию. И это одна из причин, почему наш здравый смысл временами трещит по швам. Вот так и выводится закон оптимального уровня стресса Йеркса – Додсона[395] – он предписан нам синапсами[396].

Затяжной стресс и высокий глюкокортикоидный фон имеют, помимо того, и другие следствия. В частности, в миндалине они усиливают LTP и подавляют LTD, ускоряя выработку реакции страха; а в лобной коре в этих условиях LTP ослабляется. И что получится, если скомбинировать эти эффекты? Итогом будут более возбудимые синапсы в миндалине и менее возбудимые в лобной коре; перед нами переживающий стресс человек, вспыльчивый, со слабым контролем поведения[397].

 

Назад из мусорной корзины

 

Сейчас в представлениях о механизмах памяти доминирует гипотеза синаптического усиления. Но удивительным образом пригодилась и забракованная идея о формировании новых синапсов. Когда научились считать синапсы в нейронах точнее – спасибо новой технике, – выяснилось, что если крыс содержать в разнообразной, стимулирующей обстановке, то число синапсов в гиппокампе растет.

Применяя изощреннейшие методики, можно наблюдать, как по ходу обучения у крысы меняется та или иная дендритная веточка. И это фантастика! Мы видим, как за минуты или часы отрастает новый дендритный шипик, тянется к нависшему рядом аксональному кончику. А спустя неделю-другую между ними формируется и функциональный синапс, который стабилизирует новое воспоминание/навык (при других обстоятельствах дендритный шипик, наоборот, втягивается, а синапс исчезает).

И этот индуцированный действием синаптогенез взаимоувязан с долговременной потенциацией: когда в синапсе происходит LPT, кальциевая цунами в шипике запускает заодно и формирование нового шипика по соседству.

Новые синапсы появляются по всему мозгу. Разучиваешь какие-нибудь гимнастические упражнения – синапсы возникают в моторной коре, смотришь на что-то много раз – вот они и в зрительной коре. А если трогать крысу за усики один раз, другой, третий – то новые синапсы появляются у крысы, в вибриссовой зоне коры[398].

Более того, когда в нейроне сформировано достаточно много новых синапсов, то количество и длина веточек дендритного «дерева» тоже возрастают, увеличивая, таким образом, число вероятных аксональных переговорных пунктов.

В истории об оптимальном стрессе (закон Йеркса – Додсона) стрессу и глюкокортикоидам отведена своя роль. Средний, проходящий стресс и соответствующий ему уровень глюкокортикоидов увеличивают число шипиков в гиппокампе, а длительный стресс (со своим уровнем глюкокортикоидов) действует в противоположном направлении[399]. И даже еще хуже: при хронической депрессии и тревожных состояниях – двух синдромах, которые характеризуются повышенным уровнем глюкокортикоидов, – уменьшается количество шипиков и размер самого дендритного дерева в гиппокампе. И дело тут в пониженном количестве фактора роста BDNF, о котором говорилось в предыдущей главе.

Хронический стресс и высокий уровень глюкокортикоидов вызывают редукцию шипиков и потерю синапсов, снижают уровень молекул склеивания нервных клеток, стабилизирующих синапсы (NCAM, от англ. neural cell adhesion molecule), уменьшают выброс глутамата в лобной коре. Чем больше выражены эти изменения, тем труднее принимать решения, тем хуже внимание[400].

В главе 4, как мы помним, сообщалось, насколько явно стресс усиливает взаимосвязь лобной коры и двигательных отделов мозга и при этом ослабляет связь лобной коры и гиппокампа. В результате принятие решений идет по накатанной, а новые обстоятельства во внимание не принимаются. В том же ключе срабатывает хронический стресс: он увеличивает число шипиков в лобно-моторных путях и уменьшает его в лобно-гиппокамповых[401].

Добавим к отличиям миндалины от лобной доли и гиппокампа еще одно: хронический стресс увеличивает уровень BDNF и количество дендритов в БЛМ, таким образом укрепляя реакцию страха и усиливая тревожность[402]. То же самое происходит и в том транспортном узле, из которого расходятся пути из миндалины в другие части мозга (это ЯЛКП). Вспомним, что если БЛМ включена в формирование реакции страха, то центральная миндалина занимается врожденными фобиями. И любопытно, что стресс не затрагивает врожденные фобии и не влияет на число шипиков нейронов центральной миндалины.

Заметим здесь интереснейшую особенность, а именно связь с контекстом. Когда у крысы в ответ на ужас вырабатываются тонны глюкокортикоидов, это приводит к атрофии дендритов в гиппокампе. Но когда она с удовольствием бегает в колесе, выбрасывая точно такое же количество глюкокортикоидов, то дендриты, наоборот, растут. Выглядит все так, как будто гиппокамп должен приписать эти глюкокортикоиды «хорошему» или «плохому» стрессу, а затем дать – или, соответственно, не давать – указание миндалине вступать в игру[403].

На число шипиков и длину дендритных отростков в гиппокампе и лобной коре положительно влияет эстроген[404]. У самок крыс дендритные деревья вытягиваются и сжимаются, как аккордеон, в согласии с овуляционным циклом: эстроген растет – и деревья растут (и между прочим, когнитивные показатели у самок растут тоже)[405].

Резюмируем: нейроны могут отращивать новые дендритные веточки и шипики, увеличивая размер дендритного дерева, или – в других обстоятельствах – могут их уменьшать; а гормоны при этом выступают в качестве исполнителей.

 

Пластичность аксонов

 

Между тем на другом конце нейрона, аксональном, есть своя пластичность: аксоны могут давать свои ростки, которые отправляются осваивать новые пути. Вот удивительнейший и нагляднейший пример. Когда незрячий человек учится читать по шрифту Брайля, у него, как и положено, активируется тактильная область, но кроме нее, заметьте, возбуждается одновременно и зрительная кора[406]. Иными словами, нейроны, которые обычно посылают аксоны в тактильную область, обрабатывающую информацию от кончиков пальцев, на этот раз заставляют аксоны уйти с маршрута на тысячи нейронных миль и дорасти до зрительной области. Описан один поразительный случай слепой от рождения женщины, у которой вследствие инсульта пострадала зрительная кора. В результате она потеряла способность читать по Брайлю. Выпуклые буквы казались ей теперь плоскими, нечеткими – но при этом другие тактильные функции остались в норме. В другом исследовании слепых людей учили ассоциировать буквы Брайля с определенным звуковым тоном; нужно было добиться того, чтобы последовательность звуков воспринималась как последовательность букв или слов. И когда такие обученные испытуемые «читали со звуком», то у них возбуждалась та часть зрительной коры, которая активируется при чтении у зрячих. Сходные явления известны и для глухих, использующих жестовый язык. Когда они смотрят на поющего человека, у них активируется та часть слуховой коры, которая в обычном случае возбуждается звуками речи.

При травмах нервная система может несколькими способами перепланировать себя. Предположим, при инсульте у человека повреждена часть коры, которая отвечает на тактильные сигналы, поступающие от руки. Тактильные рецепторы в пальцах в норме, но им не с кем вести переговоры. И в результате человек теряет чувствительность. Спустя месяцы, а иногда и годы аксоны, идущие от этих рецепторов, отращивают новые ветки в соседние области коры и там формируют новые синапсы. В результате руке вернется чувствительность, пусть и менее точная, чем раньше (так же снизится чувствительность той части тела, нейроны которой проецируются в область коры, принявшую аксонов-перебежчиков).

Давайте вообразим, что перестали работать тактильные рецепторы ладони. Теперь от них не идут аксоны к соответствующей области коры. Но кора не выносит пустоты, и вот уже аксоны от осязательных нейронов запястья пускают свои веточки на заброшенную соседнюю территорию в коре. Представим, что будет при деградации сетчатки, когда рецепторы из нее больше не посылают сигналов в зрительную кору. Как в случае со слепыми людьми, нейроны от кончиков пальцев, обученные читать азбуку Брайля, отсылают отростки в зрительную область, обустраивая там свой собственный лагерь. Или ситуация с псевдотравмой: после нескольких дней, проведенных испытуемым с повязкой на глазах, его слуховые нейроны начинают переориентироваться на зрительную область (и уходят обратно, когда повязку снимают)[407].

Предположим, что отростки нейронов из осязательной области, относящейся к кончикам пальцев, обученным азбуке Брайля, ушли в зрительную кору. И допустим, мы знаем, что тактильная область коры далеко отстоит от зрительной коры. Тогда нужно понять, каким образом нейроны, занятые осязанием, узнают:

а) что где-то в зрительной области есть пустующая территория;

б) что скучающие зрительные нейроны поспособствуют преобразованию выпуклостей под пальцами в читабельную информацию;

в) как вообще отправить аксональный отросток на неизведанную доселе территорию.

 

Сейчас ученые как раз и работают над этими вопросами.

Что происходит, когда слуховые нейроны посылают свои отростки в не занятую делом зрительную кору, расширяя таким образом зону своего влияния? У слепого обостряется слух – вот что происходит: мозг восполняет дефицит одной функции за счет усиления другой.

Итак, отростки сенсорных нейронов можно перенаправить в другие места. И если уж зрительные нейроны оказываются вовлечены в чтение по Брайлю, то и они, в свою очередь, вынуждены перепланировать путь собственных отростков в новые, соответствующие задаче места, где опять же потребуется перепланировка. Это волны пластичности.

Перепланировка постоянно происходит и в отсутствие травм. Мой любимый пример – музыканты. У них области коры, вовлеченные в обработку звуковой информации, существенно больше, чем у немузыкантов. Особенно это касается областей, отвечающих за звуки их собственного инструмента и определение высоты голоса. Чем раньше ребенка начинают учить музыке, тем сильнее эта перестройка[408].

Для такой перепланировки не требуется десятилетий практики, как показал в своей красивой работе Альваро Паскуаль-Леоне из Гарвардского университета[409]. Добровольцев-немузыкантов каждый день по два часа учили играть на пианино упражнение для пяти пальцев. Через несколько дней тренировок область моторной коры, заведующая движениями руки, расширилась, правда, это увеличение без последующих тренировок сохранялось всего около суток. По существу похоже на открытый Хеббом процесс, т. е. на усиление уже существующих связей после повторов действий. Но если ученик упорен в своих занятиях – по два часа ежедневно, то через четыре сумасшедшие недели перестройки в коре не исчезают, а сохраняются еще в течение многих дней. Предположительно, по мере тренировок отрастают новые аксоны и формируются новые нейронные связи. Любопытно, что такие же перестройки в коре происходили и у тех, кто это упражнение не играл по два часа в день, а воображал по два часа в день, как он его играет.

Еще одним примером подобных перестроек является расширение зоны коры, связанной с чувствительностью кожи вокруг сосков; это расширение регистрируется у самок крыс сразу после рождения детенышей. И другой пример – совсем иного рода: когда учишься жонглировать, то через несколько месяцев тренировок расширяется область зрительной коры, которая обрабатывает визуальную информацию о движениях[410][411].

Мы видим, что под влиянием опыта меняются число и сила синапсов, широта дендритного охвата и цели аксональных отростков. Пришло время самой главной революции для отяжелевшей нейробиологии.

 

 

Дата: 2019-07-24, просмотров: 259.