Оптические диски многоразовой записи бывают трех типов: магнитооптический, полимерный и фазоинверсный. Почти все существующие в настоящее время коммерческие продукты выполненны по магнитооптической технологии.
Как следует из их названия, магнитооптические диски предполагают использование магнитных и оптических процессов. Такая комбинация позволяет добиться большего потенциала для записи, чем каждая технология, взятая в отдельности. Плотность записи магнитооптических дисков - около 15 тысяч дорожек на дюйм. Они обладают высокой степенью совместимости с CD-ROM и WORM и лишены недостатков, присущих полимерным и фазоинверсным оптическим дискам.
Первым и получившим наибольшую известность примером технологии “красящий полимер” является CD-совместимая система THOR(Tandy High-perfomance Optical Recording system - высокопроизводительная записывающая оптическая система), преподнесенная как компакт диск, на который можно записывать.
Технология полимерных дисков использует прозрачный пластиковый диск с окрашенным слоем, адсорбирующим тепло лазерного луча дисковода. В разогретой лучом области происходят физические изменения. Процесс считывания с полимерного диска аналогочен процессу считывания с других видов оптических дисков и заключается в том, что области с записью отражают свет иначе, чем промежуточные, которых не касался лазерный луч. В результате можно использовать те же оптические системы, что и в проигрывателе компакт-дисков. Однако в дисководе полимерного диска применяются два лазерных луча, поэтому он дороже, чем магнитооптический диск. К тому же носитель выдерживает только от 1 тысячи до 10 тысяч циклов перезаписи.
В оптических системах, использующих изменение фазы, состояние активного слоя для сохранения нулей и единиц цифрового кода изменяется от кристаллического к аморфному и обратно. Фазоинверсный диск - это полимерный диск с особым металлическим слоем. Луч лазера своим теплом изменяет молекулярную структуру металла, превращая точечные участки его поверхности из аморфных в кристаллические. В результате носитель становится состоящим из крошечных светлых и темных пятнышек, которые могут использоваться для кодирования цифровой информации. Для этой технологии требуется мощный лазер, Накопитель снова получается дорогим, а диск не выдерживает большего числа циклов перезаписи.
Для работы с библиотекой оптических дисков многоразовой записи выпускаются системы с автоматическим поиском и подачей дисков. Вместимость такого устройства может составлять от пяти до 700 оптических дисков общей емкостью 100 Гбайт. Электромеханический привод, управляемый от головного компьютера, выбирает, перемещает и устанавливает диски в дисковод, помещаемый внутри корпуса библиотеки. Он обеспечивает доступ к огромному количеству данных в пределах нескольких секунд без вмешательства оператора.
Структура и принцип работы оптических дисков
Многоразовой записи
С каждой стороны диска расположен несущий слой, а в промежутке - клеевая прослойка. Вся эта “сердцевина“ помещена в защитную оболочку с нанесенной на нее сеткой.
Несущий слой оптического диска многоразовой записи состоит из магнитной пленки, которая, оказавшись в мягком магнитном поле при темрературе около 145’С, меняет полярность на противоположную, а при комнатной температуре ведет себя стабильно. Магнитная пленка наносится в результате сложного процесса вакуумного напыления. Цифровая информация записывается не ямками и бугорками, как на других оптических носителях, а направлением магнитного потока.
В качестве прослойки используется смола, скрепляющая пластины между собой. Оболочкой служит, как правило, поликарбонат с непрерывной спиральной канавкой, которая и образует дорожки на диске, и секторными линиями.
Структура магнитооптического
диска многоразовой записи
Слой клея
Магнитооптический слой
Зеркальный слой
Защитный слой
Связующий слой
Пластмассовая
оболочка
МО накопитель построен на совмещении магнитного и оптического принципа хранения информации. Записывание информации производится при помощи луча лазера и магнитного поля, а считывание при помощи одного только лазера. В отличие от традиционных магнитных устройств в данном случае головка чтения/записи содержит магнит и лазер.
В процессе записи, магнитный материал МО диска не способен изменить свою полярность, пока не будет нагрет до температуры около 145`С. В результате образуется крошечная область в большем магнитном поле, и только на эту область влияет поле. После окончания нагрева сопротивляемость снова увеличивается но полярность нагретой точки остается. В цикле записи, полярность магнитного поля меняется на противоположную, что соответсвует двоичной единице. В этом цикле лазерный луч включается только на тех участках, которые должны содержать двоичные единицы, и оставляет участки с двоичными нулями без изменений.
В процессе чтения с МО диска используется эффект Керра. Лазерный луч, который движется над диском и считывает данные, поляризован. Таким образом, фотоны в лазерном луче ориентированы в одном направлении. Когда поляризованный луч бьет магнитно-упорядоченные частицы диска, магнитное поле частиц слегка поворачивает вектор поляризации светового луча. Этот поворот ощущается магнитной головкой.
Схема считывания информации
с магнитооптического диска
1 0 1 0 0
При считывании используется лазерный луч небольшой интенсивности, не приводящий к нагреву считываемого участка, таким образом при считывании хранимая информация не разрушается. Такой способ, не деформирует поверхность диска и позволяет повторную запись без дополнительного оборудования. Этот способ также имеет преимущество перед традиционной магнитной записью в плане надежности. Так как перемагничиваниие участков диска возможно только под действием высокой температуры, вероятность случайного перемагничивания очень низка, в отличии от магнитной записи, к потери которой могут привести случайные магнитные поля.
Дата: 2019-07-24, просмотров: 250.