Участие G-белков в реализации АЦ стимулирующего эффекта инсулина
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Для доказательства участия G-белков в действии инсулина на активность АЦ был применен широко распространенный подход, в котором используется набор гуаниновых нуклеотидов, способных в разной степени либо стимулировать ГТФ-азную активность G-белков в присутствии ГТФ и его аналогов - ГТФγS, ГИДФ и тем самым активировать АЦ, либо ингибировать ГТФ-азную активность G-белка в присутствии ГДФβS.

Было исследовано влияние ГТФ и ряда его негидролизуемых аналогов на активность АЦ в присутствии и отсутствии гормона (Табл. 6).


Таблица 6. Влияние гуаниновых нуклеотидов в отсутствии и присутствии инсулина на активность АЦ во фракции мышечных мембран крысы и моллюска

 

Воздействия

 

Животные

Крыса Моллюск

Активность АЦ (%)

Контроль 100±1.01% 100±1.3%
Инсулин (10-8М) 222±1.3% (+122%) 186±1.8% (+86%)
ГТФγS (10-5М) 242±1.4% (+142%) 470±9.4% (+370%)
ГИДФ (10-5М) 236±1.8% (+136%) 269±4.9% (+169%)
ГТФ (10-5М) 135±1.05% (+35%) 163±5.1% (+63%)
ГДФβS (10-5М) 95±1.2% (-5%) 92±2.4% (-8%)
Инсулин + ГТФγS 473±2.5% (+373%) [109%] 726±20.3% (+626%) [170%]
Инсулин + ГИДФ 399±8.2% (+299%) [41%] 441±12.3% (+341%) [86%]
Инсулин + ГТФ 277±10.1% (+177%) [20%] 279±8.4% (+179%) [30%]
Инсулин + ГДФβS 102±5.4% (+2%) [-17%] 105±4.3% (+5%) [-86%]

 

Примечание: в круглых скобках – активирующий АЦ эффект используемых агентов в% по отношению к базальной активности, принятой за 100%. В квадратных скобках – потенцирование эффекта гормона в присутствии гуаниновых нуклеотидов в %.

 


Согласно представленным данным, ГТФγS, ГИДФ, ГТФ стимулируют активность АЦ в мышечных мембранах крыс и моллюсков. При совместном действии инсулина и гуаниновых нуклеотидов происходит усиление (потенцирование) эффекта гормона по сравнению с аддитивным эффектом гормона и гуаниновых нуклеотидов, действующих раздельно - в присутствии ГТФγS, ГИДФ и ГТФ на +109%, +41% и +20% у крыс и на +170%, 86% и 30% у моллюсков (табл. 6). ГДФβS же напротив снижает АЦ стимулирующий эффект инсулина как в мышцах крыс, так и моллюсков.

Потенцирование эффекта инсулина в присутствии ГТФγS, ГИДФ, ГТФ и отсутствие потенцирующего эффекта в присутствии ГДФβS свидетельствует о вовлеченности Gs-белков в АЦ сигнальный механизм действия пептидов инсулинового суперсемейства.

 

Таблица 7. Влияние коклюшного и холерного токсинов на базальную, инсулин- и ИФР1-стимулируемую активность АЦ в скелетных мышцах крысы и моллюска A.cygnea

 

Активность АЦ (пкмоль цАМФ/мин/мг белка)

Воздействия

Скелетные мышцы крысы

Гладкие мышцы моллюска

  Без КТ +КТ Без КТ +КТ
Без пептидов 39.7±3.4 48.5±2.0 63.2±4.1 69.1±9,6
  (100%) (100%) (100%) (100%)
Инсулин 67.9±3.6 48.2±2.7 200.5±14.4 74.2±7.6
10-9М (171%) (99%) (317%) (108%)
ИФР-1 57.4±2.1 43.1±1.6 139.2±12.4 76.8±7.3
10-9М (145%) (89%) (220%) (111%)
  Без ХТ +ХТ Без ХТ +ХТ
Без пептидов 39.6±2.6 79.7±2.7 47.4±3.0 94.3±5.6
  (100%) (100%) (100%) (100%)
Инсулин 69.3±2.8 105.8±7.4 151.7±9.8 134.0±7.5
10-9М (175%) (133%) (320%) (142%)
ИФР-1 56.7±4.2 106.2±6.5 100.0±5.4 122.6±8.8
10-9М (143%) (133%) (210%) (130%)

 

Примечание: В скобках – активность АЦ в%. Активность АЦ без пептидов принята за 100%.

 

Для выяснения типов G белков, вовлеченных в АЦ сигнальный механизм действия инсулина и ИФР-1 были использованы бактериальные токсины (коклюшный и холерный), которые модифицируют α-субъединицы Gi и Gs белков.

Коклюшный токсин вызывает АДФ-рибозилирование αi-субъединицы Gi белка, что ведет к потере его функциональной активности (Milligan, 1988; Reisine, 1990). Известно, что βγ-димер Gi белка обладает собственной регуляторной способностью и может стимулировать активность ФИ-3-К. Обработка мышечных мембран крысы и моллюска коклюшным токсином приводила к блокированию АЦ стимулирующего эффекта, как инсулина, так и ИФР-1 (таблица 7), что можно объяснить нарушением диссоциации гетеротримерного Gi белка на αi-субъединицу и βγ димер в условиях действия коклюшного токсина.

Таким образом, коклюшный токсин, предотвращая индуцируемую инсулином или ИФР-l стимуляцию активности ФИ-3-К, реализуемую через βγ-зависимый механизм, тормозит активацию АЦ.

Влияние холерного токсина на мембраны приводит к блокаде ГТФ-азной активности αs-субъединицы и тем самым переводит её в перманентно активированное состояние. В связи с этим обработка мембран холерным токсином может повлечь за собой стимулирование каталитической активности АЦ и наряду с этим ослабление регуляторных эффектов гормонов, действие которых на АЦ осуществляется через Gs белок (Milligan, 1988; Reisine, 1990). Обработка фракции мышечных мембран крысы и моллюска холерным токсином приводит к 2х-кратному увеличению базальной активности АЦ и снижению стимулирующего эффекта инсулина и ИФР-1 на активность фермента (таблица 7), что полностью согласуются со сведениями литературы и указывает на вовлеченность Gs белка в активацию АЦ с участием инсулина или ИФР-1.

Таким образом, совокупность данных, полученных с использованием коклюшного и холерного токсинов, указывает на участие как Gi, так и Gs белков в АЦ сигнальном механизме действия инсулина и ИФР-l.



Дата: 2019-07-24, просмотров: 163.