Группы радиопротекторов, имеющих наибольшее практическое значение
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой
Класс веществ Важнейшие препараты Ожидаемое значение ФИД Длительность радиозащитного действия Радиозащитная широта
Тиоалкиламины Цистеамин Цистамин Гаммафос 1,2-1,5 4-6 ч 2-3
Индолилалкиламины Триптамин Серотонин Мексамин 1,2-1,4 30-60 мин 20-30
Имидазолины Индралин Нафтизин 1,2-1,4 30-60 мим 30-90

 

Механизмы радиозащитного действия

Согласно   современным представлениям, механизмы радиозащитного действия

радиопротекторов связаны с возможностью снижения косвенного (обусловленного избыточным накоплением в организме продуктов свободнорадикальных реакций: активных форм кислорода, оксидов азота, продуктов перекисного окисления липидов) поражающего действия ионизирующих излучений на критические структуры клетки — биологические мембраны и ДНК. Указанный эффект может быть достигнут:

· «фармакологическим» снижением содержания кислорода в клетке, что ослабляет выраженность «кислородного эффекта» и проявлений оксидативного стресса;

· прямым участием молекул радиопротектора в «конкуренции» с продуктами свободнорадикальных реакций за «мишени» (инактивация свободных радикалов, восстановление возбужденных и ионизированных биомолекул, стимуляция антиоксидантной системы организма и т. д.);

· торможением под влиянием радиопротектора митотической активности стволовых клеток костного мозга;

· сочетанием всех вышеперечисленных механизмов.

К препаратам, механизм радиозащитного действия которых связан преимущественно с кислородным эффектом, относятся биологически ак­тивные амины и их фармакологические агонисты (серотонин и другие индолилалкиламины, фенилалкиламины, мезатон, клонидин, препараты из группы производных имидазола и др.). Эти препараты вызывают гипоксию преимущественно паренхиматозных органов (и костного мозга), оказывая здесь сосудосуживающее действие. В результате напряжение кислорода вблизи внутриклеточных мишеней ИИ снижается, что сопровождается повышением радиорезистентности кроветворных клеток. Это уменьшает выраженность костномозгового синдрома, которая при дозах облучения до 10 Гр определяет исход лучевого поражения.

Активность серосодержащих радиопротекторов определяется главным образом наличием в их молекуле свободной или легко высвобождаемой SH-группы, в силу чего они способны выступать в роли «перехватчиков» свободных радикалов окислительного типа, образующихся при действии ИИ на воду и биомолекулы. Наряду с перехватом радикалов серосодержащие радиопротекторы способны непосредственно воздействовать на возбужденные молекулы биосубстрата и гасить их колебания еще до того, как их структура претерпит необратимые изменения. Обладая комплексообразующими свойствами, серосодержащие радиопротекторы могут также связывать ионы двухвалентных металлов (железа, меди), являю­щихся катализаторами перекисного окисления липидов.

Важным механизмом радиозащитного действия тио-алкил-аминов является их способность снижать внутриклеточное напряжение кислорода в кроветворных клетках, стимулируя процессы его утилизации в митохондриях. При наличии значительных диффузионных барьеров между кровью и внутриклеточной средой такой метаболический эффект сопровождается увеличением трансмембранного градиента напряжения кислорода и, соответственно, снижением величины рС>2 во внутриклеточных компартментах. То есть, в отличие от биогенных аминов, тио-алкил-амины снижают оксигенацию внутриклеточных мишеней ИИ не за счет уменьшения доставки кислорода в ткани, а за счет его ускоренного расходования.

Наконец, важную роль в механизмах противолучевого действия серосодержащих радиопротекторов играет их способность временно ингибировать митотическую активность клеток радиочувствительных тканей, в результате чего создаются благоприятные условия для пострадиационной репарации поврежденных в момент облучения молекул ДНК.

 

Дата: 2019-04-23, просмотров: 232.