Разделение на High Avalibility и High Performance системы
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

2009



Оглавление

 

Цели и задачи

Основные задачи:

Кластерная архитектура

Разделение на High Avalibility и High Performance системы

Проблематика High Performance кластеров

Проблематика High Availability кластерных систем

Смешанные архитектуры

Решение задач оптимизации

Решение задачи оптимизации по производительности

Решение задачи оптимизации по надежности

Решение задачи оптимизации по мультипликативному критерию

Выводы

Список литературы



Цели и задачи

Целью курсовой работы является изучение принципов построения систем параллельной обработки данных, а также ознакомление с методами расчета надежности и производительности кластерных систем и их оптимизации. Также, в процессе выполнения курсовой работы, будут получены основы работы в математическом редакторе MathCad.

 

Основные задачи:

1. Привести основы построения кластерных систем и их классификацию;

2. Рассчитать решение задачи оптимизации кластера по различным факторам:

a. По производительности

b. По надежности

c. По мультипликативному критерию (по времени обслуживания запросов и надежности)



Кластерная архитектура

 

Под кластерной системой понимают набор рабочих станций (или даже персональных компьютеров) общего назначения, соединенных с помощью стандартных сетевых технологий (Fast/Gigabit Ethernet, Myrinet) на базе шинной архитектуры или коммутатора. Такие суперкомпьютерные системы являются самыми дешевыми, поскольку собираются на базе стандартных комплектующих элементов ("off the shelf"), процессоров, коммутаторов, дисков и внешних устройств.

Кластер функционирует как единая система, то есть для пользователя или прикладной задачи вся совокупность вычислительной техники выглядит как один компьютер. Именно это и является самым важным при построении кластерной системы.

К общим требованиям, предъявляемым к кластерным системам, относятся:

1. Высокая готовность

2. Высокое быстродействие

3. Масштабирование

4. Общий доступ к ресурсам

5. Удобство обслуживания

Естественно, что при частных реализациях одни из требований ставятся во главу угла, а другие отходят на второй план. Так, например, при реализации кластера, для которого самым важным является быстродействие, для экономии ресурсов меньше внимания придают высокой готовности.

В общем случае кластер функционирует как мультипроцессорная система, поэтому, важно понимать классификацию таких систем в рамках распределения программно-аппаратных ресурсов.

Смешанные архитектуры

 


Рисунок 3. Высокоскоростной отказоустойчивый кластер

 

Сегодня часто можно встретить смешанные кластерные архитектуры, которые одновременно являются как системами высокой готовности, так и высокоскоростными кластерными архитектурами, в которых прикладные задачи распределяются по узлам системы. Наличие отказоустойчивого комплекса, увеличение быстродействия которого осуществляется путем добавления нового узла, считается самым оптимальным решением при построении вычислительной системы. Но сама схема построения таких смешанных кластерных архитектур приводит к необходимости объединения большого количества дорогих компонентов для обеспечения высокого быстродействия и резервирования одновременно. И так как в High Performance кластерной системе наиболее дорогим компонентом является система высокоскоростных коммуникаций, ее дублирование приведет к значительным финансовым затратам. Следует отметить, что системы высокой готовности часто используются для OLTP задач, которые оптимально функционируют на симметричных мультипроцессорных системах. Реализации таких кластерных систем часто ограничиваются 2-х узловыми вариантами, ориентированными в первую очередь на обеспечение высокой готовности. Но в последнее время использование недорогих систем количеством более двух в качестве компонент для построения смешанных HA/HP кластерных систем становится популярным решением.

Решение задач оптимизации

 

Для решения задач оптимизации кластерной структуры использованы инструментальные средства математического редактора MathCad.

Ниже приведены решения трех задач: по производительности, по надежности и по мультипликативному критерию (по надежности и времени обслуживания запросов).

В решении задач были использованы следующие переменные:

c – цена одного узла

p – надежность узлов

v – среднее время

λ – количество отказов в единицу времени

с0 – максимально допустимая сумма денежных средств



Выводы

 

В результате проведенной работы были рассмотрены основы построения кластерной архитектуры, их классификация и основные преимущества.

Были решены три оптимизационные задачи по расчету производительности, надежности и по мультипликативному критерию при заданных параметрах.

Также были получены основы работы в математическом редакторе MathCad.



Список литературы

 

1. http://www.ixbt.com/cpu/clustering.shtml

2. http://www.csa.ru/analitik/distant/q_9.html

3. http://ru.wikipedia.org/wiki/HPC

4. http://www.interface.ru/fset.asp?Url=/misc/cod.htm

5. http://www.kcc.ru/about/partners/product8/cat19/prod107

2009



Оглавление

 

Цели и задачи

Основные задачи:

Кластерная архитектура

Разделение на High Avalibility и High Performance системы

Проблематика High Performance кластеров

Проблематика High Availability кластерных систем

Смешанные архитектуры

Решение задач оптимизации

Решение задачи оптимизации по производительности

Решение задачи оптимизации по надежности

Решение задачи оптимизации по мультипликативному критерию

Выводы

Список литературы



Цели и задачи

Целью курсовой работы является изучение принципов построения систем параллельной обработки данных, а также ознакомление с методами расчета надежности и производительности кластерных систем и их оптимизации. Также, в процессе выполнения курсовой работы, будут получены основы работы в математическом редакторе MathCad.

 

Основные задачи:

1. Привести основы построения кластерных систем и их классификацию;

2. Рассчитать решение задачи оптимизации кластера по различным факторам:

a. По производительности

b. По надежности

c. По мультипликативному критерию (по времени обслуживания запросов и надежности)



Кластерная архитектура

 

Под кластерной системой понимают набор рабочих станций (или даже персональных компьютеров) общего назначения, соединенных с помощью стандартных сетевых технологий (Fast/Gigabit Ethernet, Myrinet) на базе шинной архитектуры или коммутатора. Такие суперкомпьютерные системы являются самыми дешевыми, поскольку собираются на базе стандартных комплектующих элементов ("off the shelf"), процессоров, коммутаторов, дисков и внешних устройств.

Кластер функционирует как единая система, то есть для пользователя или прикладной задачи вся совокупность вычислительной техники выглядит как один компьютер. Именно это и является самым важным при построении кластерной системы.

К общим требованиям, предъявляемым к кластерным системам, относятся:

1. Высокая готовность

2. Высокое быстродействие

3. Масштабирование

4. Общий доступ к ресурсам

5. Удобство обслуживания

Естественно, что при частных реализациях одни из требований ставятся во главу угла, а другие отходят на второй план. Так, например, при реализации кластера, для которого самым важным является быстродействие, для экономии ресурсов меньше внимания придают высокой готовности.

В общем случае кластер функционирует как мультипроцессорная система, поэтому, важно понимать классификацию таких систем в рамках распределения программно-аппаратных ресурсов.

Разделение на High Avalibility и High Performance системы

В функциональной классификации кластеры можно разделить на "Высокоскоростные" (High Performance, HP), "Системы Высокой Готовности" (High Availability, HA), а также "Смешанные Системы".

Высокоскоростные кластеры используются для задач, которые требуют значительной вычислительной мощности. Классическими областями, в которых используются подобные системы, являются:

· обработка изображений: рендеринг, распознавание образов

· научные исследования: физика, биоинформатика, биохимия, биофизика

· промышленность (геоинформационные задачи, математическое моделирование) и много других…

Кластеры, которые относятся к системам высокой готовности, используются везде, где стоимость возможного простоя превышает стоимость затрат, необходимых для построения кластерной системы, например:

· биллинговые системы

· банковские операции

· электронная коммерция

· управление предприятием, и т.п.

Смешанные системы объединяют в себе особенности как первых, так и вторых. Позиционируя их, следует отметить, что кластер, который обладает параметрами как High Performance, так и High Availability, обязательно проиграет в быстродействии системе, ориентированной на высокоскоростные вычисления, и в возможном времени простоя системе, ориентированной на работу в режиме высокой готовности.



Дата: 2019-05-29, просмотров: 243.