СТАНДАРТІВ 802.11 b/g
Останніми роками напрям безпровідних комп'ютерних мереж та віддаленого доступу зазнав бурхливого розвитку. Це пов'язано з поширенням блокнотних комп'ютерів, систем пошукового виклику (так званих пейджерів) та появою систем класу «персональний секретар» (Personal Digital Assistant (PDA)), розширенням функціональних можливостей стільникових телефонів.
Такі системи повинні забезпечити ділове планування, розрахунок часу, зберігання документів та підтримку зв'язку з віддаленими станціями. Девізом цих систем став вислів «anytime and anywhere», тобто надання послуг зв'язку незалежно від місця та часу.
Крім того, безпровідні канали в'язку актуальні там, де неможливе або дороге прокладання кабельних ліній та значні відстані. Донедавна більшість безпровідних комп'ютерних мереж передавали дані зі швидкістю від 1.2 до 14.0 кбіт/с, найчастіше тільки короткі повідомлення (передавання файлів великих розмірів чи довгі сеанси інтерактивної роботи з базою даних були недоступні). Нові технології безпровідного передавання оперують зі швидкостями в декілька десятків мегабітів за секунду. Серед відмінних якостей безпровідних технологій найбільш очевидне – це можливість мобільності. Неможливість під’єднання рухомих абонентів є принципово нездоланним обмеженням провідних мереж. Це надає безпровідним мережам суттєвої технологічної переваги.
Однією з економічних переваг безпровідних мереж є те, що при протяганні кабелю для під’єднання до мережі віддалених абонентів необхідний і час і матеріальні затрати, а це є економічно недоцільно. А при побудові безпровідних мереж такого недоліку немає.
Також слід відзначити, що сучасний бездротовий зв'язок може працювати на швидкостях до 300 Мбіт/с. Це швидкість звичайної дротової локальної мережі. Для більшості офісних додатків швидкості бездротової мережі більш ніж достатньо. Бездротовий зв'язок підкреслює активну позицію бізнесу в інформаційних технологіях, особливо при проведенні переговорів та презентацій. Сьогодні найвідомішими та найбільш розповсюдженими стандартами безпровідних мереж є Bluetooth, Wi-Fi стандарту IEEE 802.11b і IEEE802.11g. До мереж висуваються наступні вимоги [11]:
- швидкість передачі даних;
- дальність зв’язку;
- апаратурні затрати;
- максимальна кількість вузлів;
- вартість.
Використовуючи перераховані вимоги як критеріїї порівняння, в табл. 5.1 наведено порівняльну характеристику стандартів безпровідних мереж.
Таблиця 5.1 – Порівняльна характеристика Bluetooth, IEEE 802.11b і IEEE 802.11g
Критерій | Bluetooth | IEEE 802.11b | IEEE 802.11g |
Швидкість передачі | 721 кбіт/с | 11 Мбіт/с | 54 Мбіт/с |
Тип модуляції | FHSS | DSSS | DSSS, OFDM |
Дальність зв’язку | до 10 м | до 100 м | до 100 м |
Апаратурні затрати | малі | середні | середні |
Кількість вузлів | 8 пристроїв на одну пікомережу, максмум 10 піко-мереж | декілька сотень пристроїв до однієї точки доступу (теоритично) | декілька сотень пристроїв до однієї точки доступу (теоритично) |
Вартість | низька | середня | середня |
Як видно з табл. 5.1 стандарт 802.11b займає проміжне місце по вимогам до безпроводових мереж між стандартами Bluetooth і 802.11g. Недоліками стандарту Bluetooth є мала дальність зв’язку і низька швидкість передачі даних, хоча, враховуючи низькі витрати і апаратурні затрати, цей стандарт актуальний для побудови невеликих мереж.
Стандарти IEEE 802.11b і IEEE 802.11g майже однакові за параметрами. Основна відмінність полягає у вищій швидкості передачі стандарту IEEE 802.11g. Проте майже усі точки доступу підтримують обидва стандарти, тому впровадження мережі стандарту IEEE 802.11b, дає також змогу підключатися до цієї мережі абонентам на більш високій швидкості.
Також, враховуючи те, що більшість сучасних ПК, мобільних пристроїв таких як ноутбуки, кишенькові комп’ютери тощо мають вбудовані адаптери стандарту IEEE 802.11b/g, а ціна на адаптери зараз невисока, то впровадження мережі цього стандарту буде актуальним і перспективним.
Додаток
(Огляд патентів)
INTEGRATING AND WIFI SERVICE IN MOBILE COMMUNICATION DEVICES
A system that integrates Global System for Mobile Communications (GSM) and Wireless Fidelity (WiFi) wireless local area network (WLAN) services is provided. The system couples among components of a communications service provider and a provider of WiFi services to provide integrated cellular communications and wireless fidelity network services to users of mobile devices. The system monitors communications between the service provider and the mobile devices and automatically gathers identification information of the mobile devices. Upon authentication of the mobile devices via an exchange of information among the service provider infrastructures and the mobile devices, the system controls access of the mobile communication devices to WiFi services via the service provider infrastructure using the identification information[15].
SYSTEMS AND METHODS FOR PROVIDING LOCATION-AWARE WI-FI ACCESS FOR A PORTABLE DEVICE
Methods and systems for providing location-aware WiFi access for a portable device include determining an initial location of the portable device and transmitting the initial location to a WiFi location provider, wherein the WiFi location provider comprises locations and WiFi parameters for a plurality of WiFi access points, wherein each WiFi access point has a corresponding wireless range. The locations and the WiFi parameters for a set of WiFi access points are then received from the WiFi location provider, wherein the set of WiFi access points are within a radius of the initial location of the portable device. At least one WiFi access point in the set of WiFi access points is scanned for that contains the portable device within its wireless range. The portable device then connects to the at least one WiFi access point, thereby forming a WiFi connection[16].
METHOD FOR LOCATING VEHICLES BASED ON WI-FI INFRASTRUCTURES
The invention relates to a method for locating vehicles based on Wi-Fi infrastructures, with a plurality of access points physically located in the environment wherein the location is carried out. The vehicle to be located comprises a location Wi-Fi device. According to said method: the different radio channels of the access points (1) are listened to by means of the Wi-Fi device; RSSI values of the intensity of the radio signal for each available access point (1) are obtained and stored for each listening; the RSSI values stored are filtered (14) in order to obtain a single filtered RSSI value, RSSIFILT, for each access point (1); a location message is generated (15) with information from the Wi-Fi device and the RSSIFILT value for each access point; the location message is sent (17) to a location server; and the location server derives the physical positioning co-ordinates of the vehicle (3) from the information included in the location message[17].
INTEGRATING POSITION-DETERMINING AND WI-FI FUNCTIONS
Techniques are described for leveraging position-determining functions and Wi-Fi functions on a device by integrating these functions. In one or more implementations, Wi-Fi data is provided on a electronic device configured with Wi-Fi and position-determining functionality. This Wi-Fi data is then used to facilitate the device accessing a Wi-Fi network available within a geographical region associated with the device. In at least some implementations, the facilitating is associated with identifying and/or selecting one or more potential Wi-Fi networks to access by integrating the Wi-Fi data with received positioning data and map data on the device. In at least some embodiments, the facilitating is associated with communicatively linking to a selected Wi-Fi network[18].
СИСТЕМА ПРЕДОСТАВЛЕНИЯ ПЛАТНЫХ УСЛУГ ПРИ ПРОКАТЕ СЕРВИСНОГО ОБОРУДОВАНИЯ.
Формула полезной модели 1. Система предоставления платных услуг при прокате сервисного оборудования, содержащая подсистему идентификации пользователя и контроля оплаты услуг, отличающаяся тем, что в нее введены мультисервисный контроллер сети в виде необслуживаемого компьютера в защитном корпусе и связанное с этим контроллером комплексное устройство считывания информации, содержащее считыватель информации с метки радиочастотной идентификации и считыватель информации с магнитной карты. 2. Система по п.1, отличающаяся тем, что в нее введен, по меньшей мере, один связанный с мультисервисным контроллером сети датчик системы радиочастотной идентификации для защиты от выноса сервисного оборудования. 3. Система по п.1, отличающаяся тем, что сеть указанной системы выполнена в виде беспроводной сети, образованной узлом беспроводного обмена информацией Wi-Fi или Wi-MAX, подключенным к мультисервисному контроллеру сети, и, встроенными в каждую единицу оборудования, меткой радиочастотной идентификации и приемопередатчиком Wi-Fi или Wi-MAX[19].
HYBRID WIMAX AND WI-FI
Embodiments disclosed herein describe a hybrid network comprising of multiple WiMAX base stations, multiple dual technology hybrid wireless nodes, where each hybrid wireless node comprises of a WiMAX Subscriber Station interface to link with WiMAX base stations, multiple Wi-Fi interfaces, multiple Wi-Fi Access Point interfaces and a WiMAX BS interface to link with users who are using WiMAX devices, and a hybrid controller at each backhaul point connecting both WiMAX and Wi-Fi networks to the Internet[20].
A METHOD AND APPARATUS FOR VIRTUAL WI-FI SERVICE WITH AUTHENTICATION AND ACCOUNTING CONTROL
A method of providing virtual Wi-Fi service with accounting and authentication control via a virtual Wi-Fi access network is provided. The method comprises: connecting a subscriber to the virtual Wi-Fi access network, wherein the virtual Wi-Fi access network comprises a plurality of individual Wi-Fi access points in communication with at least one virtual Wi-Fi access server; prompting the subscriber for an account ID and password; performing subscriber authentication at the virtual Wi-Fi access server; where the subscriber has been authenticated, establishing a Wi-Fi session for the subscriber in the virtual Wi-Fi access network and applying an accounting function to the Wi-Fi session; and notifying the virtual Wi-Fi access server when the subscriber exits from the virtual Wi-Fi network[21].
ПЕРЕЛІК ПОСИЛАНЬ
1. Широкополосные беспроводные сети передачи информации / Вишневский В. М. [та ін.]. – М. : Техносфера, 2005. – 592 с.
2. Столлингс В. Беспроводные линии связи и сети : пер. с англ. / В. Столлингс. – М. : Издательский дом «Вильямс», 2003. – 640 с.
3. Шиллер Й. Мобильные коммуникации : пер. с англ. / Й. Шиллер. – М. : Издательский дом «Вильямс», 2002. – 384 с.
4. Сайт компанії «Технотрейд». – 2008. – Режим доступу: http://www.technotrade.com.ua/ (15.10.2010). – Назва з екрану.
5. Свободная энциклопедия «Википедия». – 2002. – Режим доступа: http://ru.wikipedia.org/wiki/Wi-Fi (21.10.2010). – Назва з екрану.
6. Журнал про телекомунікації. – 2005. – Режим доступу: http://www.ukr-net.net/links/view/784/ (04.11.2010). – Назва з екрану.
7. Лисенко Г. Л. Методичні вказівки до оформлення курсових проектів (робіт) у Вінницькому національному технічному університеті / Уклад. Г.Л. Лисенко, А.Г. Буда, Р.Р. Обертюх. – Вінниця: ВНТУ, 2006. – 60 с.
8. Гейер Д. Беспроводные сети. Первый шаг : пер. с англ. / В. Гусева. – М. : Издательский дом «Вильямс», 2005. – 192 с.
9. Вишневский В. Беспроводные сети широкополосного доступа к ресурсам Интернета / В. Вишневский. – М. : Техносфера, 2003. – 108 с.
10. Sklar B. Rayleigh fading Channels in mobile digital communication systems / B. Sklar. – P. : Prentice-Hall, Sept. 2000. – 146 pp.
11. Ghosh A. Broadband Wireless Access with WiMax/802.16 : IEEE commun. magazine / A. Ghosh, D. Volter, R. Chen. – D. : BAO, Feb. 2005. – 129 pp.
12. Bello P. Characterization of Randomly Time-Variant Linear Channels / P. Bello. – V. : Science, Dec. 2003 – 81 pp.
13. Foschini G. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas : Bell Labs. Tech. Journal / G. Foscini. – V. Science, May 2004 – 47 pp.
14. Gong Y. An Efficient SpaceFrequency Coded OFDM System for Broadband Wireless Communications / Y. Gong, B. Lataief. – V. Science, Jun. 2003 – 172 pp.
15. Pat. WO/2004/075484 USA, H04L 12/28 (2006.01), H04L 29/06 (2006.01), H04W 12/08 (2009.01), H04W 48/18 (2009.01), H04W 12/06 (2009.01), H04W 84/04 (2009.01), H04W 92/02 (2009.01). INTEGRATING GSM AND WIFI SERVICE IN MOBILE COMMUNICATION DEVICES / Jiang Y. – № PCT/US2004/004318 ; fil. 13.02.2004 ; publ. 02.09.2004.
16. Pat. WO/2009/137718 USA, H04W 88/00 (2009.01). SYSTEMS AND METHODS FOR PROVIDING LOCATION-AWARE WI-FI ACCESS FOR A PORTABLE DEVICE / Chara K. – № PCT/US2009/043204 ; fil. 07.05.2009 ; publ. 12.11.2009.
17. Pat. WO/2009/115628 Spain, G01S 5/02 (2006.01). METHOD FOR LOCATING VEHICLES BASED ON WI-FI INFRASTRUCTURES / Caballero M. – № PCT/ES2009/000155 ; fil. 18.03.2009 ; опубл. 24.09.2009.
18. Pat. WO/2009/094474 USA, H04W 64/00 (2009.01), H04W 8/08 (2009.01). INTEGRATING POSITION-DETERMINING AND WI-FI FUNCTIONS / Kelley S. – № PCT/US2009/031722 ; fil. 22.01.2009 ; publ. 30.07.2009.
19. Пат. 91454 Российская Федерация, МПК G06F G06Q. Система предоставления платных услуг при прокате сервисного оборудования / К. А. Таргонский, В. В. Выгулярный, Р. К. Эккарт. – № 20001371/09 ; заявл. 04.10.2009 ; опубл. 10.02.2010.
20. Pat. WO/2009/108183 USA, H04B 1/00 (2006.01). HYBRID WIMAX AND WI-FI / Salimath R. – № PCT/US2008/054879 ; fil. 25.02.2008 ; publ. 03.09.2009.
21. Pat. WO/2009/099514 USA, H04W 12/06 (2009.01), H04W 4/24 (2009.01). A METHOD AND APPARATUS FOR VIRTUAL WI-FI SERVICE WITH AUTHENTICATION AND ACCOUNTING CONTROL / Cal Y. – № PCT/US2009/000307 ; fil. 16.01.2009 ; publ. 13.08.2009.
Дата: 2019-05-29, просмотров: 193.