Квантовій опис атомів і резонансна взаємодія з електромагнітним полемо
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

У класичній електродинаміці взаємодія між зарядами здійснюється через поле: заряд породжує поле і це поле діє на інші заряди. У квантовій теорії взаємодія поля і заряду виглядає як випускання і поглинання зарядом квантів Поля — фотонів. Взаємодія ж між зарядами, наприклад між двома електронами в Квантова теорія поля є результатом їх обміну фотонами: кожен з електронів випускає фотони (кванти електромагнітного поля, що переносить взаємодію), які потім поглинаються ін. електроном. Це справедливо і для ін. фізичних полів: взаємодія в Квантова теорія поля— результат обміну квантами поля.

У цій досить наочній картині взаємодії є, проте, момент, що потребує додаткового аналізу. Поки взаємодія не почалася, кожна з часток є вільною, а вільна частка не може ні випускати, ні поглинати квантів. Дійсно, розглянемо вільну нерухому частку (якщо частка рівномірно рухається, завжди можна перейти до такої інерціальної системи відліку, в якій вона покоїться). Запасу кінетичної енергії в такої частки немає, потенційною — випромінювання енергетично неможливе.

Аби вирішити цей парадокс, потрібно врахувати, що дані частки є квантовими об'єктами і що для них істотні незрозумілостей співвідношення. Ці співвідношення зв'язують невизначеності координати частки (Dх) і її імпульсу (Dр):

 

  (1.1)

 

Є і друге співвідношення — для незрозумілостей енергії DE і специфічного часу Dt даного фізичного процесу (тобто часу, протягом якого процес протікає):

 

. (1.2)

 

Якщо розглядається взаємодія між частками за допомогою обміну квантами поля (це поле часто називається проміжним), то за Dt природно прийняти тривалість такого акту обміну. Питання про можливість випускання кванта вільною часткою відпадає: енергія частки, згідно (10), не є точно визначеною; за наявності ж квантового розкиду енергій DE закони збереження енергії і імпульсу не перешкоджають більш ні випусканню, ні поглинанню квантів, що переносять взаємодію, якщо лише ці кванти мають енергію ~ DE і існують протягом проміжку часу.

Проведені міркування не лише усувають вказаний вище парадокс, але і дозволяють отримати важливі фізичні виводи. Розглянемо взаємодію часток в ядрах атомів. Ядра складаються з нуклонів, тобто протонів і нейтронів. Експериментально встановлено, що поза межами ядра, тобто на відстанях, великих приблизно 10–12 см, взаємодія невідчутно, хоча в межах ядра воно свідомо велике. Це дозволяє стверджувати, що радіус дії ядерних сил має порядок L ~ 10–12 см.Саме такий дорога пролітають, отже, кванти, що переносять взаємодію між нуклонами в атомних ядрах. Час перебування квантів "в дорозі", навіть якщо прийняти, що вони рухаються з максимально можливою швидкістю (із швидкістю світла з), не може бути менше, ніж Dt. Згідно попередньому, квантовий розкид енергії DE взаємодіючих нуклонів виходить рівним DE ~. В межах цього розкиду і повинна лежати енергія кванта — переносника взаємодії. Енергія кожної частки маси m складається з її енергії спокою, рівною mc2,и кінетичної енергії, зростаючої у міру збільшення імпульсу частки. При не дуже швидкому русі часток кінетична енергія мала в порівнянні з mc2, так що можна прийняти DE " mc2. Тоді з попередньої формули виходить, що квант, що переносить взаємодії в ядрі, повинен мати масу порядку. Якщо підставити в цю формулу чисельні значення величин, то виявляється, що маса кванта ядерного поля приблизно в 200—300 разів більше маси електрона.

Такий напівякісний розгляд привів в 1935 японського фізика-теоретика Х. Юкава до передбачення нової частки; пізніше експеримент підтвердив існування такої частки, названої пі-мезоном. Цей блискучий результат значно укріпив віру в правильність квантових уявлень про взаємодію як про обмін квантами проміжного поля, віру, що зберігається в значній мірі до цих пір, не дивлячись на те, що кількісну мезонну теорію ядерних сил побудувати все ще не удалося.

Якщо розглянути 2 настільки важкі частки, що їх можна вважати класичними матеріальними крапками, то взаємодія між ними, що виникає в результаті обміну квантами маси m, приводить до появи потенційної енергії взаємодії часток, рівної

 

, (1.3)

 

де r — відстань між частками, а g — так звана константа взаємодії даних часток з полем квантів, що переносять взаємодію (або інакше — заряд, відповідний даному виду взаємодії).

Якщо застосувати цю формулу до випадку, коли переносниками взаємодії є кванти електромагнітного поля — фотони, маса спокою яких m = 0, і врахувати, що замість g повинен стояти електричний заряд е, то вийде добре відома енергія кулонівської взаємодії двох зарядів: Uел = е2/r.

Дата: 2019-05-29, просмотров: 293.