Порівняння зварювання з іншими видами з'єднань
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Вступ

 

Зварюванням називається процес отримання не рознімного з'єднання твердих матеріалів шляхом їх місцевого сплавлення чи спільного деформування, в результаті чого отримуються міцні зв'язки між атомами зварюваних елементів.

Зварювання, термічну різку широко застосовують в усіх галузях промисловості. Це пояснюється перед усім економією металу. Найбільшої економії досягають при застосуванні зварних з’єднань встик, при цьому економія металу складає біля 20%.

Зменшення витрат металу знижує вартість зварюваних деталей і конструкцій. Вартість їх також зменшується за рахунок зменшення трудомісткості.

За допомогою зварювання отримують деталі та конструкції не тільки із сталей, а й з кольорових металів та сплавів (алюміній, мідь, нікель, титан, латунь, бронза і т. п.).

Історія розвитку зварювання.

Спочатку використовувалось кузнечне зварювання – дві деталі нагрівалися у горні та з'єднувалися за допомогою зусилля прикладеного до цих деталей.

Розвитку нинішнього зварювання послугувало відкриття в 1802 році явище зварювальної дуги. Це відкриття зробив професор Санкт-Петербурзької хіміко-хірургічної академії В.В. Петров. Проводячи досліди він отримав яскравий спалах – зварювальну дугу. В.В. Петров описав явища що відбуваються в ній, а також вказав на можливість її практичного застосування.
 В 1882 році російський вчений М.М. Бенардос винайшов спосіб зварювання вугільним електродом сутність якого заключається
у слідуючому: зварювальна дуга горить між вугільним електродом та зварюваним металом, а для утворення зварювального шва необхідно застосовувати присадочний матеріал. Як джерело електричної енергії використовувалися акумуляторні батареї.

В 1886 році російський інженер М.Г. Славянов винайшов зварювання металевим електродом, сутність якого полягає у слідуючому: зварювальна дуга горить між зварюваним металом та плавлячимися металевим електродом, який утворює зварювальний шов.

Розвиток і промислове застосування зварювання вимагав розробки і виготовлення надійних джерел живлення, що забезпечують стійке горіння дуги. Таке устаткування – зварювальний генератор СМ-1 і зварювальний трансформатор з нормальним магнітним розсіянням СТ-2 – було виготовлено вперше в 1924 році Ленінградським заводом «Електрик». У тому ж році радянський учений В.П. Никітін розробив принципово нову схему зварювального трансформатора типа СТН. Випуск таких трансформаторів завод «Електрик» почав з 1927 г. У 1928 році учений Д.А. Дульчевський винайшов автоматичне зварювання під флюсом. Новий етап в розвитку зварювання відноситься до кінця 30-х років, коли колективом інституту електрозварювання АН УРСР під керівництвом академіка Е.О. Патона був розроблений промисловий спосіб автоматичного зварювання під флюсом. Впровадження його у виробництво почалося з 1940 г. Зварювання під флюсом зіграло величезну роль в роки війни при виробництві танків, самохідних знарядь і авіабомб. Пізніше був розроблений спосіб напівавтоматичної зварки під флюсом. В кінці 40-х років отримало промислове застосування зварювання в захисному газі. Колективами Центрального науково-дослідного інституту технологій машинобудування і Інституту електрозварювання імені Е.О. Патона розроблена і в 1952 році упроваджена напівавтоматична зварка у вуглекислому газі. Величезним досягненням зварювальної техніки з'явилася розробка колективом ІЕС в 1949 році електрошлакової зварки, що дозволяє зварювати метали практично будь-якої товщини.





Опис матеріалу виробу

 

Всі деталі обічайки виготовлені зі сталі Вст3пс (конструкційна вуглецева сталь звичайної якості, що поставляється по механічних властивостях і хімічному складі, напівспокійна) ГОСТ 535–79, ГОСТ 14637–79. З неї виготовляють елементи зварних і незварних конструкцій і деталей, що працюють при позитивних температурах. Фасонний і листовий прокат завтовшки до 10 мм для елементів зварних конструкцій, що працюють при змінних навантаженнях в інтервалі від –40 до +425 °С. Прокат від 10 до 25 мм – для елементів зварних конструкцій, що працюють при температурі –40 до +425 °С за умови постачання із зварюваністю, що гарантується.
 Вуглецеві сталі представляють значну групу конструкційних матеріалів; вони складають 80% загального об'єму продукції чорної металургії. Сталі звичайної якості дешеві, мають задовільні механічні властивості у поєднанні з хорошою зварюваністю.

До хімічного складу сталі Вст3пс входять: вуглець, кремній, марганець, нікель, сірка, фосфор, хром, мідь, миш'як.

Вплив елементів, які входять до хімічного складу сталі Вст3пс.

Хром в низковуглецевих сталях міститься в межах до 0,3%, в конструкційних 0,7–3,5%, в хромистих 12–18%, в хромонікелевих 9–35%. При зварюванні хром утворює карбіди хрому, які погіршують корозійну стійкість сталі і різко підвищують твердість в зонах термічного впливу; сприяє утворенню тугоплавких оксидів, що затрудняють процес зварки.

Нікель знаходиться в низьковуглецевих сталях в межах 0,2–0,3%, в конструкційних 1–5%, в легованих 8–35%. Нікель збільшує пластичність і прочність сталі, подрібнює зерна, не погіршуючи зварюваності.

Вуглець – одна з найбільш важливих домішок, що визначає міцність, в'язкість, загартовуваність і особливо зварюваність стали. Вміст вуглецю в звичайних конструкційних сталях в межах до 0,25% не погіршує зварюваності. При вищому вмісті зварюваність сталі різко погіршується, оскільки в зонах термічного впливу утворюються структури гарт, що приводить до тріщин.

Марганець міститься в сталі в межах 0,3–0,8%. Процес зварювання марганець не утрудняє. При зварці середньомарганцовистих сталей (1,8–2,5% Mn) виникає небезпека появи тріщин у зв'язку з тим, що марганець сприяє збільшенню загартовуваності сталі.

Кремній знаходиться в сталі в межах 0,02–0,3%. Він не викликає затрудненнь при зварюванні. У спеціальних сталях при вмісті кремнію 0,8–1,5% умови зварки погіршуються із-за високої рідкотекучості крем'янистої сталі і утворення тугоплавких оксидів кремнію.

Сірка шкідливий домішок, вона знижує міцність металу і затрудняє процес зварювання. Знижує зносостійкість та пластичність металу, а також сприяє утворенню гарячих тріщин. ЇЇ вміст в сталі не повинен перевищувати 0.055%.

Фосфор також являється шкідливим домішком, сприяє утворенню холодних тріщин. Його вміст в сталі не повинен перевищувати 0.05%.

Взагалі сталь Вст3пс володіє хорошою зварюваністю у будь-яких просторових положеннях.

 

Хімічний склад в% матеріала ВСт3пс

C Si Mn Ni S P Cr Cu As
0.14 – 0.22 0.05 – 0.17 0.4 – 0.65 до 0.3 до 0.05 до 0.04 до 0.3 до 0.3 до 0.08

Механічні властивості при Т=20oС матеріала ВСт3пс

Сортамент Р о зм і р Напр. σв σт δ5
- мм - МПа МПа %
Прокат гарячекатан. до 20   370–480 245 26
Прокат гарячекатан. 20 – 40     235 25

σв – межа короткочасної міцності,

σт – межа пропорційності (межа текучості для залишкової деформації),

δ5 – відносне подовження при розриві.


Вибір способу зварювання.

Вибір того або іншого способу зварювання залежить від наступних чинників:

- товщина зварюваного матеріалу;

- довжини зварних швів;

- вимог до якості продукції, що випускається;

- хімічного складу металу;

- продуктивності, що передбачається.

- собівартості 1 кг металу, що наплавляється.

Серед способів електродугового зварювання найширше застосовуються:

- ручне дугове зварювання;

- напівавтоматичне зварювання в захисних газах;

- автоматичне зварювання в захисних газах і під шаром флюсу.

Найширше із цих способів електродугового зварювання застосовується напівавтоматичне зварювання в захисних газах.

Технологічними перевагами зварювання в захисних газах є:

- відносна простота процесу;

- відсутність необхідності вживання флюсів або обмазок, а отже і очищення швів від шлаку і невикористаного флюсу;

- можливість механізації процесу у всіх просторових положеннях;

- при зварці в інертних газах мінімальна взаємодія металу з киснем і азотом;

- можливість зварювання різних металів;

- можливість регулювання процесу зварювання і спостереження за дугою;

- висока продуктивність процесу.

- високий ступінь концентрації джерела тепла, що дозволяє зменшити зону термічного впливу і зменшити короблення виробу.

Собівартість 1 кг металу, що наплавляється, при зварюванні у вуглекислому газі завжди нижче, ніж при газовому і ручному дуговому зварюванні.

Тому для зварювання обічайки використовується напівавтоматичне зварювання в СО2.

Режими зварювання

Режимом зварювання називається сукупність характеристик зварювального процесу, що забезпечують здобуття зварних з'єднань заданих розмірів, форм і якості. При всіх дугових способах зварювання такими характеристиками є наступні параметри: діаметр електроду, сила зварювального струму напруга на дузі, швидкість переміщення електроду уздовж шва, рід струму і полярність. При механізованих способах зварювання додається ще один параметр – швидкість подачі зварювального дроту, а при зварюванні в захисному газі – питома витрата захисного газу. Параметри режиму зварки впливають на форму, і розміри шва. Тому, щоб отримати, якісний зварний шов заданих розмірів, необхідно правильно підібрати режими зварювання, виходячи з товщини і властивостей зварюваного металу, типу з'єднання і його положення в просторі. На форму і розміри шва впливають не лише основні параметри режиму зварювання, але також і технологічні чинники, як рід і щільність струму, нахил електроду і виробу, виліт електроду, конструкційна форма виробу і величина зазору.

Величини зварювального струму, що рекомендуються, залежно від діаметру електродного дроту

Діаметр електродного дроту, мм 0,5 0,8 1 1,2 1,6 2 2,5
Рекомендовані межі зварювального струму, А 30–60 50–100 70–120 90–150 140–300 200–500 300–700
Щільність струму, а/мм2 150 100 85 80 70 65 60

 

Оскільки сила зварювального струму встановлюється залежно від вибраного діаметру електродного дроту то для зварювання обічайки приймаємо 140–300 А.

Із збільшенням сили зварювального струму збільшується глибина провару і підвищується продуктивність процесу зварки. Напруга дуги залежить від довжини дуги. Чим довше дуга, тим більше напруги на ній. Із збільшенням напруги дуги збільшується ширина шва і зменшується глибина його провару. Встановлюється напруга дуги залежно від вибраної сили зварювального струму.

Швидкість подачі електродного дроту підбирають з таким расчётом, щоб забезпечувалося стійке горіння дуги при вибраній напрузі на ній. Вилітом електроду називається довжина відрізку електроду між його кінцем і виходом його з мундштука. Величина вильоту робить великий вплив на стійкість процесу зварювання і якості зварного шва. Із збільшенням вильоту погіршується стійкість горіння дуги і формування шва, а також збільшується розбризкування. При зварюванні з дуже малим вильотом важко спостерігати за процесом зварювання і часто підгорає контактний наконечник. Величину вильоту рекомендується вибирати залежно від діаметру електродного дроту.


Рекомендовані значення вильоту електродного дроту

Діаметр електродного дроту, мм 0,8 1 1,2 1,6 2 2,5
Виліт електрода, мм 6 – 12 7 -13 8 -15 13–20 15–25 15–30

 

Окрім вильоту електроду, необхідно витримувати відстань від сопла пальника до виробу, оскільки із збільшенням цієї відстані можливе попадання кисню і азоту повітря в наплавлений метал і утворення пор у шві. Величину відстані від сопла пальника до виробу слід витримувати в приведених значеннях.

 

Рекомендовані відстані від сопла пальника до виробу

Діаметр електродного дроту, мм 0,5–0,8; 1,0–1,2; 1,6–2,0; 2,5–3,0;  
Відстані від сопла пальника до виробу 5–15 8–18 15–25 20–40  

 

При зварюванні у вуглекислому газі зазвичай застосовують постійний струм зворотної полярності, оскільки зварювання струмом прямої полярності приводить до нестійкого горіння дуги. Змінний струм можна застосовувати лише з осцилятором, проте в більшості випадків рекомендується застосовувати постійний струм.

Витрату вуглекислого газу визначають залежно від сили струму, швидкості зварювання, типу з'єднання і вильоту електрода. В середньому газу витрачається від 5 до 20 л/мін. Нахил електроду щодо шва робить великий вплив на глибину провару і якість шва. Залежно від кута нахилу зварювання можна проводити кутом назад і кутом вперёд. При зварюванні кутом назад в межах 5 – 10° покращується видимість зони зварювання, підвищується глибина провару і наплавлений метал виходить більш щільним. При зварюванні кутом вперёд важче спостерігати за формуванням шва, але краще спостерігати за зварюваними кромками і направляти електрод точно по зазорах. Ширина валу при цьому зростає, а глибина провару зменшується. Цей спосіб рекомендується застосовувати при зварці тонкого металу де існує небезпека прожога. Швидкість зварювання встановлюється самим зварювальником залежно від товщини металу і необхідної площі поперечного перерізу шва. При дуже великій швидкості зварювання кінець електроду може вийти з-під зони захисту газом і окислюватися на повітрі.


Вступ

 

Зварюванням називається процес отримання не рознімного з'єднання твердих матеріалів шляхом їх місцевого сплавлення чи спільного деформування, в результаті чого отримуються міцні зв'язки між атомами зварюваних елементів.

Зварювання, термічну різку широко застосовують в усіх галузях промисловості. Це пояснюється перед усім економією металу. Найбільшої економії досягають при застосуванні зварних з’єднань встик, при цьому економія металу складає біля 20%.

Зменшення витрат металу знижує вартість зварюваних деталей і конструкцій. Вартість їх також зменшується за рахунок зменшення трудомісткості.

За допомогою зварювання отримують деталі та конструкції не тільки із сталей, а й з кольорових металів та сплавів (алюміній, мідь, нікель, титан, латунь, бронза і т. п.).

Історія розвитку зварювання.

Спочатку використовувалось кузнечне зварювання – дві деталі нагрівалися у горні та з'єднувалися за допомогою зусилля прикладеного до цих деталей.

Розвитку нинішнього зварювання послугувало відкриття в 1802 році явище зварювальної дуги. Це відкриття зробив професор Санкт-Петербурзької хіміко-хірургічної академії В.В. Петров. Проводячи досліди він отримав яскравий спалах – зварювальну дугу. В.В. Петров описав явища що відбуваються в ній, а також вказав на можливість її практичного застосування.
 В 1882 році російський вчений М.М. Бенардос винайшов спосіб зварювання вугільним електродом сутність якого заключається
у слідуючому: зварювальна дуга горить між вугільним електродом та зварюваним металом, а для утворення зварювального шва необхідно застосовувати присадочний матеріал. Як джерело електричної енергії використовувалися акумуляторні батареї.

В 1886 році російський інженер М.Г. Славянов винайшов зварювання металевим електродом, сутність якого полягає у слідуючому: зварювальна дуга горить між зварюваним металом та плавлячимися металевим електродом, який утворює зварювальний шов.

Розвиток і промислове застосування зварювання вимагав розробки і виготовлення надійних джерел живлення, що забезпечують стійке горіння дуги. Таке устаткування – зварювальний генератор СМ-1 і зварювальний трансформатор з нормальним магнітним розсіянням СТ-2 – було виготовлено вперше в 1924 році Ленінградським заводом «Електрик». У тому ж році радянський учений В.П. Никітін розробив принципово нову схему зварювального трансформатора типа СТН. Випуск таких трансформаторів завод «Електрик» почав з 1927 г. У 1928 році учений Д.А. Дульчевський винайшов автоматичне зварювання під флюсом. Новий етап в розвитку зварювання відноситься до кінця 30-х років, коли колективом інституту електрозварювання АН УРСР під керівництвом академіка Е.О. Патона був розроблений промисловий спосіб автоматичного зварювання під флюсом. Впровадження його у виробництво почалося з 1940 г. Зварювання під флюсом зіграло величезну роль в роки війни при виробництві танків, самохідних знарядь і авіабомб. Пізніше був розроблений спосіб напівавтоматичної зварки під флюсом. В кінці 40-х років отримало промислове застосування зварювання в захисному газі. Колективами Центрального науково-дослідного інституту технологій машинобудування і Інституту електрозварювання імені Е.О. Патона розроблена і в 1952 році упроваджена напівавтоматична зварка у вуглекислому газі. Величезним досягненням зварювальної техніки з'явилася розробка колективом ІЕС в 1949 році електрошлакової зварки, що дозволяє зварювати метали практично будь-якої товщини.





Опис матеріалу виробу

 

Всі деталі обічайки виготовлені зі сталі Вст3пс (конструкційна вуглецева сталь звичайної якості, що поставляється по механічних властивостях і хімічному складі, напівспокійна) ГОСТ 535–79, ГОСТ 14637–79. З неї виготовляють елементи зварних і незварних конструкцій і деталей, що працюють при позитивних температурах. Фасонний і листовий прокат завтовшки до 10 мм для елементів зварних конструкцій, що працюють при змінних навантаженнях в інтервалі від –40 до +425 °С. Прокат від 10 до 25 мм – для елементів зварних конструкцій, що працюють при температурі –40 до +425 °С за умови постачання із зварюваністю, що гарантується.
 Вуглецеві сталі представляють значну групу конструкційних матеріалів; вони складають 80% загального об'єму продукції чорної металургії. Сталі звичайної якості дешеві, мають задовільні механічні властивості у поєднанні з хорошою зварюваністю.

До хімічного складу сталі Вст3пс входять: вуглець, кремній, марганець, нікель, сірка, фосфор, хром, мідь, миш'як.

Вплив елементів, які входять до хімічного складу сталі Вст3пс.

Хром в низковуглецевих сталях міститься в межах до 0,3%, в конструкційних 0,7–3,5%, в хромистих 12–18%, в хромонікелевих 9–35%. При зварюванні хром утворює карбіди хрому, які погіршують корозійну стійкість сталі і різко підвищують твердість в зонах термічного впливу; сприяє утворенню тугоплавких оксидів, що затрудняють процес зварки.

Нікель знаходиться в низьковуглецевих сталях в межах 0,2–0,3%, в конструкційних 1–5%, в легованих 8–35%. Нікель збільшує пластичність і прочність сталі, подрібнює зерна, не погіршуючи зварюваності.

Вуглець – одна з найбільш важливих домішок, що визначає міцність, в'язкість, загартовуваність і особливо зварюваність стали. Вміст вуглецю в звичайних конструкційних сталях в межах до 0,25% не погіршує зварюваності. При вищому вмісті зварюваність сталі різко погіршується, оскільки в зонах термічного впливу утворюються структури гарт, що приводить до тріщин.

Марганець міститься в сталі в межах 0,3–0,8%. Процес зварювання марганець не утрудняє. При зварці середньомарганцовистих сталей (1,8–2,5% Mn) виникає небезпека появи тріщин у зв'язку з тим, що марганець сприяє збільшенню загартовуваності сталі.

Кремній знаходиться в сталі в межах 0,02–0,3%. Він не викликає затрудненнь при зварюванні. У спеціальних сталях при вмісті кремнію 0,8–1,5% умови зварки погіршуються із-за високої рідкотекучості крем'янистої сталі і утворення тугоплавких оксидів кремнію.

Сірка шкідливий домішок, вона знижує міцність металу і затрудняє процес зварювання. Знижує зносостійкість та пластичність металу, а також сприяє утворенню гарячих тріщин. ЇЇ вміст в сталі не повинен перевищувати 0.055%.

Фосфор також являється шкідливим домішком, сприяє утворенню холодних тріщин. Його вміст в сталі не повинен перевищувати 0.05%.

Взагалі сталь Вст3пс володіє хорошою зварюваністю у будь-яких просторових положеннях.

 

Хімічний склад в% матеріала ВСт3пс

C Si Mn Ni S P Cr Cu As
0.14 – 0.22 0.05 – 0.17 0.4 – 0.65 до 0.3 до 0.05 до 0.04 до 0.3 до 0.3 до 0.08

Механічні властивості при Т=20oС матеріала ВСт3пс

Сортамент Р о зм і р Напр. σв σт δ5
- мм - МПа МПа %
Прокат гарячекатан. до 20   370–480 245 26
Прокат гарячекатан. 20 – 40     235 25

σв – межа короткочасної міцності,

σт – межа пропорційності (межа текучості для залишкової деформації),

δ5 – відносне подовження при розриві.


Порівняння зварювання з іншими видами з'єднань

 

Зварювання металів застосовується у всіх галузях промисловості унаслідок його техніко-економічних переваг в порівнянні з іншими видами з'єднання. Переваги зварювання в порівнянні з клепкою, болтовими і іншими способами з'єднань деталей наступні: значна економія металу (до 25%); спрощення конструкцій; висока продуктивність і значне зниження вартості продукції (за рахунок зменшення трудомісткості, економії металу і т.і.); можливість виготовлення виробів складної форми; герметичність та надійність з’єднань; можливість застосування при ремонті (швидке і з найменшими затратами відновлення зношеного обладнання). При сучасному розвитку зварювальної техніки зварні конструкції успішно замінюють литі і ковані вироби, а також прокатні профілі. При зварюванні в порівнянні з литтям економія металу складає близько 50%. У приладобудуванні найширше застосовують електродугову і електроконтактне зварювання.

За допомогою зварювання можна отримувати з'єднання, які володіють міцністю більшою ніж у основного металу.

Дата: 2019-05-29, просмотров: 190.