В с/х производственных помещениях используют перфорированные пленочные воздухораспределители. Предусматривают расположение двух несущих тросов внутри пленочной оболочки, что придает воздуховодам овальную форму при неработающем вентиляторе и тем самым предотвращает слипание пленки.
Задача аэродинамического расчета системы воздуховодов состоит в определении размеров поперечного сечения и потерь давления на отдельных участках системы воздуховодов, а также потери давления во всей системе воздуховодов.
Исходными данными к расчету являются: расход воздуха , длина воздухораспределителя , температура воздуха и абсолютная шероховатость мм (для пленочных воздуховодов).
В соответствии с принятыми конструктивными решениями составляют расчетную аксонометрическую схему воздуховодов с указанием вентиляционного оборудования и запорных устройств.
Схему делят на отдельные участки, границами которых являются тройники и крестовины. На каждом участке наносят выносную линию, над которой проставляют расчетный расход воздуха ( ), а под линией - длину участка (м). В кружке у линии указывают номер участка.
Составляем расчетную схему:
Рис.2. Расчетная аксонометрическая схема воздуховодов.
На схеме выбираем основные магистральные расчетные направления, которые характеризуются наибольшей протяженностью.
Расчет начинаем с первого участка.
Используем перфорированные пленочные воздухораспределители. Выбираем форму поперечного сечения - круглая.
Задаемся скоростью в начальном поперечном сечении:
.
Определяем диаметр пленочного воздухораспределителя, :
.
Принимаем ближайший диаметр, исходя из того, что полученный равен (стр. 193 [2]). Динамическое давление, :
,
где - плотность воздуха.
.
Определяем число Рейнольдса:
,
где - кинематическая вязкость воздуха, , (табл.1.6 [2]).
.
Коэффициент гидравлического трения:
,
где - абсолютная шероховатость, , для пленочных воздуховодов принимаем .
.
Рассчитаем коэффициент, характеризующий конструктивные особенности воздухораспределителя:
,
где - длина воздухораспределителя, .
.
Полученное значение коэффициента 0,73, что обеспечивает увеличение статического давления воздуха по мере приближения от начала к концу воздухораспределителя.
Установим минимальную допустимую скорость истечения воздуха через отверстие в конце воздухораспределителя, :
,
где - коэффициент расхода (принимают 0,65 для отверстий с острыми кромками).
.
Коэффициент, характеризующий отношение скоростей воздуха:
,
где - скорость истечения через отверстия в конце воздухораспределителя, (рекомендуется ), принимаем .
.
Установим расчетную площадь отверстий, , в конце воздухораспределителя, выполненных на 1 длины:
.
Принимаем один участок.
Определим площадь отверстий, , выполненных на единицу воздуховода:
,
где - относительная площадь воздуховыпускных отверстий на участке воздухораспределителя ( по [1]).
.
Диаметр воздуховыпускного отверстия принимают от 20 до 80 , примем .
Определим число рядов отверстий:
,
где - число отверстий в одном ряду ( );
- площадь воздуховыпускного отверстия, .
Определим площадь воздуховыпускного отверстия, :
.
.
Шаг между рядами отверстий, :
.
Определим статическое давление воздуха, :
в конце воздухораспределителя:
;
в начале воздухораспределителя:
.
Потери давления в воздухораспределителе, :
.
Дальнейший расчет сводим в таблицу. Причем:
,
,
,
где R - удельные потери давления на единице длины воздуховода, определяется по монограмме (рис.8.6 [2])
- коэффициент местного сопротивления (таблица 8.7 [2])
скорость воздуха в жалюзийной решетке
Таблица 8. Расчет участков воздуховода.
Номер участка | , | , | , | , | , | , | , | , | , | , | |
1 | 3916,25 | 66 | 560 | 0,0022 | 6 | 0,62 | 40,92 | 0,4 | 12,59 | 5,036 | 45,956 |
2 | 916,25 | 6 | 560 | 0,0025 | 6 | 0.62 | 3,78 | 1 | 12,59 | 12,59 | 16,31 |
3 | 7832,5 | 5 | 600 | 0,0029 | 8 | 1,6 | 8 | 1,3 | 38,4 | 49,92 | 57,92 |
Калорифер | 7832,5 | - | - | - | - | - | - | - | - | - | 130,68 |
Жал. реш. | 7832,5 | - | - | - | 5 | - | - | 2 | 15 | 30 | 30 |
| итого: | 280,866 |
Вытяжные шахты
Расчет вытяжных шахт естественной вентиляции производят на основании расчетного расхода воздуха в холодный период года. Работа вытяжных шахт будет более эффективной при устойчивой разности температур внутреннего и наружного воздуха (не менее 5°С), что наблюдается в холодный период года.
Скорость воздуха в поперечном сечении вытяжной шахты, :
,
где - высота вытяжной шахты между плоскостью вытяжного отверстия и устьем шахты (3-5), (принимаем );
- диаметр (эквивалентный (0.8,0.9,1)) шахты, (принимаем );
- расчетная наружная температура, ( );
- сумма коэффициентов местных сопротивлений.
Местное сопротивление определяем по таблице 8.7 [1]:
для входа в вытяжную шахту: ;
для выхода из вытяжной шахты: .
, .
Определяем число шахт:
,
где - расчетный расход воздуха в зимний период, ;
- расчетный расход воздуха через одну шахту, .
Определяем расчетный расход воздуха через одну шахту, :
,
где - площадь поперечного сечения шахты, .
Рассчитаем площадь поперечного сечения шахты, :
.
.
.
Принимаем число шахт для всего помещения
Выбор вентилятора
Подбор вентилятора производят по заданным значениям подачи и требуемого полного давления.
В системах вентиляции и воздушного отопления с/х производственных зданий устанавливают радиальные (центробежные) вентиляторы марок В. Ц 4-75, В. Ц 4-76 и В. Ц 4-46, осевые вентиляторы марок В-06-300 и ВО.
Радиальные вентиляторы изготавливают по схемам конструктивного исполнения 1 и 6. Вентиляторы исполнения 1 более компактны и удобны при эксплуатации, с меньшим уровнем шума.
Подачу вентилятора определяем с учетом потерь или подсосов воздуха в воздуховоды, вводя поправочный коэффициент к расчетному расходу воздуха для стальных воздуховодов 1,15, :
.
Определяем требуемое полное давление вентилятора, :
,
где - температура подогретого воздуха,
=1 - при нормальном атмосферном давлении.
.
По подаче воздуха вентилятора и требуемому полному давлению, согласно графику характеристик вентиляторов ВЦ 4-75 (рис.8.16 [2]), выбираем вентилятор марки: Е 6,3-100-1.
В соответствии с выбранным ранее калорифером и выбранным теперь вентилятором заполняем таблицу характеристик отопительно-вентиляционной системы:
Таблица 9. Характеристика отопительно-вентиляционной системы.
Обозначение | Кол. систем | Наим-е помещения | Тип установки | Вентилятор | ||||||
тип | номер | исполнение | положение | , | , | , | ||||
2 | Свинарник | Е 6,3-100-1. | ВЦ 4-75 | 6,3 | 1 | Л | 9007 | 281,04 | 935 | |
Обозначение | Электродвигатель | Воздухонагреватель (калорифер) | Примечание | ||||||||
Тип | , | , | Тип | Номер | Кол-во | Тем-ра нагрева | Мощности, | , | |||
от | до | ||||||||||
4А90L6 | 1,5 | 935 | КВСБ | 10 | 1 | -22 | 20,4 | 22,605 |
Энергосбережение
Наиболее эффективным техническим решением вопроса сокращения расхода тепловой энергии на обеспечение микроклимата, безусловно является использование типа воздуха, удаляемого из животноводческих и птицеводческих помещений. Расчет технико-экономических показателей микроклимата показывает, что применение в системах утилизаторов тепла позволяет сократить расход тепловой энергии на данный технологический процесс более чем в 2 раза. Однако такие системы более металоемкие и требуют дополнительных эксплуатационных затрат электрической энергии на вентиляторы. Использование тепловой энергии в системах вентиляции в основном обеспечивается за счет применения регенеративных и рекуперативных теплообменных аппаратов различной модификации.
Литература
1. Отопление и вентиляция животноводческих зданий. Методические указания к курсовому и дипломному проектированию. - Мн. Ротопринт БАТУ. 1994 г.
2. Справочник по теплоснабжению сельского хозяйства. Под ред. А.В. Ядренцева и др.: - Мн.; Ураджай. 1993 г.
Дата: 2019-05-29, просмотров: 214.