Релейная защита трансформатора цеховой подстанции
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

В процессе эксплуатации системы электроснабжения возникают повреждения ее элементов. Наиболее опасными и частыми видами повреждений являются короткие замыкания, вследствие которых нарушается нормальная работа системы электроснабжения.

При протекании токов короткого замыкания элементы системы электроснабжения подвергаются термическому и динамическому воздействию. Для уменьшения размеров повреждения и предотвращения развития аварии устанавливают совокупность автоматических устройств, называемых релейной защитой и обеспечивающих с заданной степенью быстродействия отключение поврежденного участка или сети.

С учётом требований ПУЭ для защиты силовых трансформаторов цеховой подстанции используются следующие виды защит:

1) Токовая отсечка – предназначена для защит от междуфазных коротких замыканий на стороне высокого напряжения трансформатора и на его ошиновке. Эта защита не должна работать при междуфазных коротких замыканиях на стороне 0,4 кВ и при коротких замыканиях на отходящих линиях. Данная защита является быстродействующей, действует на отключение трансформатора.

2) МТЗ – предназначена для защиты от всех видов повреждений внутри обмотки и на выводах, а также для осуществления резервирования защит отходящих присоединений. Данная защита также может при необходимости обеспечить дальнее резервирование, имеет выдержку времени. Работает на отключение трансформатора.

3) Токовая защита нулевой последовательности – предназначена для защиты от однофазных замыканий на стороне 0,4 кВ трансформатора в зоне резервирования, является основной. Устанавливается на трансформаторах со схемой соединения D/U0, U/U0. Отстраивается от тока небаланса, работает на отключение межсекционного и вводного автомата.

В данном случае для защиты от токов однофазного короткого замыкания используется автоматический выключатель установленный на стороне 0,4 кВ после трансформатора и следовательно, токовая защита нулевой последовательности не применяется.

4) Газовая защита – от повреждений внутри кожуха, сопровождающихся выделением газа и от понижения уровня масла, выполняется с использованием реле давления и мембраны в крышке бака трансформатора.

5) Токовая защита от перегрузки – предназначена для защиты от токов, обусловленных перегрузкой трансформаторов, действует на сигнал.

Расчет параметров срабатывания максимальной токовой отсечки:

Ток срабатывания мгновенной токовой отсечки (МТО), А,

 

,    

 

где кот – коэффициент отстройки, принимается равным 1,2, о.е;

– максимальное значение периодической составляющей тока короткого замыкания в начальный момент времени, на стороне низкого напряжения трансформатора, А;

кТ – коэффициент трансформации защищаемого трансформатора, о.е;

.

Ток срабатывания реле МТО, А,

 

,  

 

где ксх – коэффициент схемы, равный 1, о.е;

кТТ – коэффициент трансформации трансформатора тока, о.е;

Трансформатор тока выбирается по номинальному току трансформатора на стороне высокого напряжения IВН.ном, А,

 

,

.

Принимается трансформатор тока с номинальным первичным током 75А, имеющий ктт=15.

.

Коэффициент чувствительности защиты, о.е,

 

,     

 

где – ток двухфазного короткого замыкания на стороне высокого напряжения трансформатора, А;

 

,     

 

где – ток трёхфазного короткого замыкания на стороне высокого напряжения трансформатора, принимается, в связи малой протяжённостью высоковольтной КЛ, равным току трёхфазного КЗ на шинах РУ 6 кВ, А;

;

,

т.е. требуемая чувствительность обеспечивается.

Расчет параметров срабатывания максимальной токовой отсечки МТО:

 

,    

 

где кот = 1,2;

кВ – коэффициент возврата реле, принимается равным 0,85, о.е;

Iраб.max – наибольшее значение рабочего тока трансформатора, принимается равным 1,3∙IВН.ном с учетом допустимой перегрузки трансформатора в послеаварийном режиме, А;

.

Ток срабатывания реле МТО, А,

 

,    

 

.

Коэффициент чувствительности защиты, о.е,

 

,     

 

где – ток двухфазного короткого замыкания в минимальном режиме на стороне высокого напряжения трансформатора при коротком замыкании на стороне 0,4 кВ, А;

 

,     

 

;

,

т.е. требуемая чувствительность обеспечивается.

Время срабатывания защиты, с,

tсз = tсз.пр + Dt , 

 

где tсз.пр – время срабатывания защит отходящих присоединений, принимается равным 0,5,с;

Dt – ступень селективности, равная 0,5, с;

tсз = 0,5 + 0,5 =1.

Расчёты параметров срабатывания токовой защиты от перегрузки с действием на сигнал.

Ток срабатывания токовой защиты с действием на сигнал, А,

Iсз= кн∙1,3∙IВН.ном,

где кн = 1,05;

Iсз=1,05∙1,3∙60,622=82,749.

Ток срабатывания реле, А,

 

,     

 

.

Время срабатывания защиты, с;

 

tсз= ,

 

tсз=1+0,5=1,5.

Защитное заземление

 

Защитным заземлением называется преднамеренное электрическое соединение с землёй или её эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус или по другим причинам. Схема защитного заземления представлена на рисунке.

Защитное заземление предназначено для устранения опасности поражения током в случае прикосновения к корпусу и другим нетоковедущим металлическим частям электроустановки, оказавшимся под напряжением. Защитное заземление следует отличать от рабочего заземления. Рабочее заземление предназначено для обеспечения надлежащей работы электроустановки в нормальных и аварийных условиях.

Корпусы электрических машин, трансформаторов, светильников, аппаратов и другие металлические нетоковедущие части могут оказаться под напряжением при повреждении изоляции и контакте их с токоведущими частями. Если корпус при этом не имеет контакта с землёй, то прикосновение к нему также опасно, как и прикосновение к фазе.

Принцип действия защитного заземления основан на снижении до безопасных значений напряжения прикосновения и напряжения шага. Это достигается путём уменьшения потенциала заземлённого оборудования (за счёт уменьшения сопротивления заземления), а также путём выравнивания потенциалов основания, на котором стоит человек, и заземлённого оборудования.

 

Рисунок 2.7 – Принципиальная схема заземления в сетях трехфазного тока

1 – заземлённое оборудование; 2 – заземлитель рабочего заземления; 3 – заземлитель защитного заземления.


Область применения защитного заземления:

- сети до 1000 В переменного тока – трехфазные трехпроводные с изолированной нейтралью, однофазные двухпроводные, изолированные от земли, а также постоянного тока двухпроводные с изолированной средней точкой обмоток источника тока;

- сети выше 1000 В переменного и постоянного тока с любым режимом работы нейтрали.

В сети с глухозаземлённой нейтралью напряжением до 1000 В заземление неэффективно, так как даже при глухом замыкании на землю ток зависит от сопротивления заземления и при его уменьшении ток возрастает.

Расчёт заземлителя подстанции 6/0,4 кВ:

Расчёт производится для понизительной подстанции, на которой установлены два трансформатора ТМЗ-630/6 с заземленными нейтралями на стороне 0,4 кВ. Заземлитель выбирается выносного типа, расположенный по контуру у наружной стены подстанции. Естественных заземлителей нет. Ток замыкания на землю неизвестен, однако известна общая протяженность кабельных линий 6 кВ lКЛ=1 км. Заземлитель предполагается выполнить из вертикальных стержневых электродов длиной lВ=3 м, диаметром d=25 мм. Верхние концы, которых соединяются между собой с помощью горизонтального электрода выполненного из той же стали, уложенной на глубине H0=0,7 м. Предварительная схема заземлителя и размеры представлены на рисунке . По предварительной схеме принимаем количество вертикальных электродов n=15 шт. Удельное сопротивление земли ρизм=100 Ом∙м.

Расчётный ток замыкания на землю, А,

 

 

где Uлин – линейное напряжение, кВ;

Требуемая норма сопротивления заземляющего устройства определяется из двух условий:

-  Ом для U до 1000 В;

-  Ом для U>1000 В при условии, что заземлитель используется одновременно и для установок U до 1000 В.

 

Рисунок 2.8 – Предварительная схема заземлителя

 

По первому условию:

.

Принимается норма сопротивления заземляющего устройства rн=4 Ом.

Удельное сопротивление земли для горизонтального и вертикального электродов, Ом×м:

 

,

 

,

 

где ксг, ксв – повышающие коэффициенты для вертикальных и горизонтальных электродов, о.е;

ксг=3,5; ксв=1,5.

Расположение вертикальных электродов относительно поверхности земли представлено на рисунке 2.9.

 

Рисунок 2.9 – Расположение вертикального заземлителя

 

Расчётное сопротивление растеканию вертикальных электродов, Ом,

 

 

.

Примерное число вертикальных электродов при предварительно принятом коэффициенте использования ηв=0,56,

 

N=RВ/( ηвrн),

 

N=46,4/(0,56∙4)=20,7.

Принимается N=20, расстояние между вертикальными электродами a=3 м.


Длина горизонтального электрода, м,

 

lг=N∙a,

 

lг=20∙3=60.

Сопротивление растеканию горизонтальных электродов, Ом,

 

 

Действительное сопротивление растеканию горизонтальных электродов, Ом, с учетом экранирования

 

 Rг.д=Rг/ηг,

 

где ηг – коэффициент использования горизонтальных электродов при N=20 и а/l=1;

 Rг.д=10,7/0,42=25,5.

Уточненное сопротивление вертикальных электродов, Ом,

 

,

 

=4,74.

Уточненное число вертикальных электродов при ηв=0,5 (для N=20, а/l=1, при расположении электродов по контуру)

 

N=RВ/( ηвRвΣ),

N=46,4/(0,5∙4,74)=19,6.

Окончательно принимается число вертикальных электродов N=20.

 



Энергетический менеджмент

 

Энергия всегда была ресурсом, необходимым для производства, но сейчас она стала признаваться одним из главных источников затрат, который заслуживает особого внимания. Развивающееся направление энергетического менеджмента подразумевает управление потреблением энергии с целью уменьшения затрат предприятия путем улучшения энергетической эффективности. Энергосбережение и повышение энергетической эффективности приводит к целому ряду преимуществ:

· увеличение прибыльности;

· бóльшая конкурентоспособность;

· сохранение рабочих мест;

· увеличение вероятности “выжить”;

· дополнительные средства на развитие бизнеса.

Реальное улучшение энергетической эффективности должно основываться не только на технических решениях, но и на более совершенном управлении. Исторически российские предприятия не придают особого значения эффективности использования и передачи электроэнергии. Признание важности электроэнергии как одного из видов ресурсов, который требует такого же менеджмента, как и любой другой дорогостоящий ресурс, а не как накладных расходов предприятия, является первым шагом к улучшению энергоэффективности и уменьшению затрат.

Как только важность энергетического менеджмента осознана, необходимо рассмотреть следующие аспекты:

· текущее состояние энергетического менеджмента;

· энергетическую политику (официальная заинтересованность в энергоменеджменте на предприятии);

· организационные аспекты – интегрирование энергоменеджмента в официальные и неофициальные структуры предприятия;

· мотивация – как создать эффективные взаимоотношения с потребителями электроэнергии и стимулировать энергосбережение;

· информационные системы – выбор подходящей и эффективной энергосистемы;

· маркетинг – где и каким образом пропагандировать и рекламировать энергоменеджмент;

· инвестирование – выбор проектов и обоснование вложений в повышение энергоэффективности;

· финансирование – выбор возможных вариантов фмнансирования мероприятий энергоменеджмента.

Дата: 2019-05-29, просмотров: 222.