До настоящего момента наиболее распространенными были метки с использованием линии задержки. Линия задержки, один из приборов на ПАВ, включает в себя два ВШП, один из которых предназначен для возбуждения, а второй для приема возбуждаемой звуковой волны (рисунок 8). При приложении ко входному ВШП электрического сигнала, возбуждается поверхностная акустическая волна. Она, в свою очередь, доходит до второго преобразователя с некоторой задержкой во времени, зависящей от расстояния между преобразователями и от скорости распространения ПАВ. Типичное время задержки составляет 1 —50 мкс [8].
Пассивная карта идентификации представляет собой несколько линии задержки (ЛЗ) на ПАВ заключенных в герметичный корпус, с тремя или более выводами (кнопками для набора идентифицирующего кода) и снабженная небольшой антенной, позволяющей принимать и излучать сигналы в заданной полосе частот с минимальными потерями. Число линий задержки зависит от значности идентифицируемого кода и может достигать семи (семизначный код). Каждая ЛЗ настроена на свою полосу частот и мало восприимчива к сигналов, предназначенных для ЛЗ, настроенных на другие полосы частот. Также дополнительные выводы позволяют увеличить число идентифицирующих комбинаций в 103раз.
Рисунок 1.6 - Линия задержки
Однако такая метка обладает существенными недостаткам: малая емкость данных и большие габаритные размеры.
Наиболее распространенным в настоящее время является транспондер на отражателях (рефлекторах). Схематическое изображение и принцип работы транспондера приведены на рисунке 9.
ВШП располагается в конце пьезоэлектрической подложки. К его шинам подключается дипольная антенна транспондера, которая принимает сигнал опроса от ридера (считывателя) и излучает ответный сигнал, генерируемый транспондером на ПАВ.
Рисунок 1.7 – Принцип работы транспондера на отражателях
По длине транспондера ПАВ размещаются отдельные электроды-рефлекторы. Их располагают на поверхности таким образом, чтобы кодировать данные, используя задержку во времени, амплитуду и фазу.
Когда транспондер попадает в зону действия ридера, то часть излучаемой ридером энергии принимается антенной транспондера и поступает к выводам ВШП в виде высокочастотного импульса напряжения.
ВШП преобразует часть этой принятой энергии в поверхностную акустическую волну, которая распространяется в кристалле под прямым углом к электродам ВШП. Для преобразования большего количества принятой транспондером электромагнитной энергии в акустическую энергию необходимо, чтобы частота передачи ридера соответствовала частоте колебаний поверхностной волны, генерируемой ВШП.
На дальнейшее распространение ПАВ по поверхности пьезоэлектрического кристалла оказывают воздействие рефлекторы. Небольшая часть поверхностной волны отражается от каждого рефлектора и движется обратно по кристаллу в направлении ВШП. Оставшаяся часть поверхностной волны продолжает двигаться к концу подложки и там гасится.
Таким образом, из одного импульса опроса генерируется несколько ответных импульсов, причем каждый рефлектор создает свой импульс в ответном сигнале транспондера.
Эта последовательность импульсов, полученная ВШП и преобразованная в высокочастотную последовательность электромагнитных импульсов, излучается антенной транспондера и может быть принята ридером. Число принимаемых импульсов соответствует числу рефлекторов на подложке.
Следует особо отметить, что время задержки между отдельными импульсами пропорционально пространственному расстоянию между рефлекторами на подложке, и поэтому пространственное расположение рефлекторов может представлять двоичную последовательность цифр, которая в простейшем случае равна идентификационному коду транспондера (количество различных кодов равно величине 2n–1, где n — число рефлекторов на подложке).
Расположение рефлекторов и, тем самым, считываемый код определяются при изготовлении устройства. Поэтому транспондеры ПАВ принадлежат к категории транспондеров «только чтение». Емкость хранения данных и скорость передачи данных транспондера на ПАВ зависят от размера подложки и минимального реализуемого расстояния между рефлекторами. Обычный транспондер на ПАВ передает около 16 или 32 бит со скоростью передачи 500 кбит/с.
В связи с невысокой скоростью распространения поверхностных волн по подложке, первый ответный импульс транспондера принимается считывателем с задержкой, равной примерно 1,5 мс. Для сравнения: временной задержки в примерно 0,66 мкс вполне достаточно, чтобы произошло затухание помех в радиусе 100 м вокруг ридера.
Таким образом, ответный сигнал транспондера приходит, когда все отражения от окружения ридера давно прекратились, и подобного рода помехи не вносят ошибки в последовательность ответных импульсов от транспондера.
Транспондеры на ПАВ являются полностью линейными устройствами и отвечают на импульс опроса с определенной фазой. Более того, фазовый угол и дифференциальное время распространения между отраженными индивидуальными сигналами сохраняют постоянное значение. Это важное свойство позволяет увеличить дальность действия транспондера на ПАВ методом усреднения слабых ответных сигналов транспондера на многие импульсы опроса. Операция считывания занимает микросекунду, поэтому за секунду может быть выполнено несколько сотен тысяч циклов чтения.
Рефлекторы реализуются с помощью системы металлизированных полосок на пьезоэлектрической подложке (рисунок 10а) или системы канавок (рисунок 10б), которые формируют путем травления.
В некоторых случаях элементы рефлектора создаются в виде диэлектрических слоев с использованием метода ионной имплантации.
Электроды транспондера создаются с помощью фотолитографической процедуры, аналогичной той, что используется в микроэлектронике при производстве интегральных схем.
Рисунок 1.8 - Рефлекторы: a) в виде металлизированных полосок на пьезоэлектрической подложке; б) в виде канавок, формируемых методом травления
Наиболлее перспективной является использование производственных линеек на базе систем наноимпринтлитографии (НИЛ). Она предполагает пошаговую штамповку в жидкий мономер с последующим его отверждением ультрафиолетовым излучением. Такой подход позволяет создавать наноразмерные структуры, что удешевляет стоимость продукции, так как на одной пластине становится возможным разместить большее количество меток, а также улучшает рабочие характеристики выпускаемой продукции
Варианты кодирования данных в метках на ПАВ
В транспондерах на ПАВ применяются в основном следующие методы кодирования данных: кодирование методом включения-выключения импульса (a) и кодирование временной позиции импульса (б).
a) В простейших транспондерах на ПАВ используется метод кодирования данных включением-выключением импульса, при котором каждая возможная позиция импульса кодирует один бит данных. Наличие или отсутствие импульса в ответном сигнале ПАВ-транспондера определяется топологией расположения рефлекторов на пьезоэлектрической подложке. Каждый рефлектор создает свой импульс в ответном сигнале ПАВ-транспондера, при этом время задержки между отдельными импульсами пропорционально пространственному расстоянию между рефлекторами на подложке. Промежутки, свободные от импульсов, отсутствуют. Размещая соответственным образом рефлекторы на подложке, можно сформировать требуемый двоичный код, представляемый последовательностью импульсов ответного сигнала транспондера.
б) В коммерческих системах на ПАВ используется метод кодирования временной позиции импульса.
В этом случае необходим так называемый импульс начала (стартовый импульс), чтобы обеспечить временную синхронизацию для остальных импульсов данных. Каждый импульс может занимать одну из 4 возможных временных позиций (рисунок 1.9). Соответствующая группа данных из 2 битов кодируется этим импульсом. Между группами данных существуют промежутки, свободные от импульсов.
При данном методе кодирования ширина импульсных слотов увеличивается примерно в два раза, чтобы обеспечить четкое разделение смежных позиций, которые могут занимать импульсы.
Рисунок 1.9 – Кодирование данных временной позиции импульсов в транспондере на ПАВ
В целом, кодирование временной позиции импульса и кодирование включением-выключением импульса обеспечивают примерно одинаковую плотность данных на единицу времени. Однако преимуществом метода кодирования временной позиции импульса является 50-процентное уменьшение импульсов данных, что означает 50-процентное уменьшение числа рефлекторов на транспондере. Благодаря использованию ограниченного числа рефлекторов улучшается детектирование данных (в каждой группе данных существует только один импульс) и обеспечивается постоянство амплитуд импульсов данных. Несмотря на то, что каждый рефлектор слегка уменьшает амплитуду сигнала, постоянное число рефлекторов означает, что импульсы сигнала, которые порождаются последними рефлекторами, всегда имеют постоянную амплитуду.
Дата: 2019-05-29, просмотров: 232.