Основные физические характеристики звезд, взаимосвязь этих характеристик. Условия равновесия звезд
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Основные физические характеристики звезд: светимость, абсолютная и видимая звездные величины, масса, температура, размер, спектр.

Светимость – энергия, излучаемая звездой или другим небесным телом за единицу времени. Обычно дается в единицах светимости Солнца, выражается формулой lg (L/Lc) = 0,4•(Mc – M), где L и M – светимость и абсолютная звездная величина источника, Lc и Mc – соответствующие величины для Солнца (Mc = +4,83). Также определяется по формуле L=4рR2уT4. Известны звезды, светимость которых во много раз превосходит светимость Солнца. Светимость Альдебарана в 160, а Ригеля в 80 000 раз больше, чем Солнца. Но подавляющее большинство звезд имеют светимости сравнимые с солнечной или меньше ее.

Звездная величина – мера яркости звезды. З.в. не дает истинного представления о мощности излу­чения звезды. Близкая к Земле слабая звезда может вы­глядеть ярче, чем далекая яркая звезда, т.к. поток излу­чения, принимаемый от нее, уменьшается обратно про­порционально квадрату расстояния. Видимая З.в. — блеск звезды, к-рый видит наблюдатель, глядя на небо. Абсолютная З.в. — мера истинной яркости, пред­ставляет собой уровень блеска звезды, к-рый она имела бы, находясь на расстоянии 10 пк. Гиппарх изобрел си­стему видимых З.в. во 2 в. до н.э. Звездам были приписа­ны числа в зависимости от их видимой яркости; ярчай­шие звезды были 1-й величины, а самые слабые — 6-й. В сер. 19 в. эта система была модифицирована. Современная шкала З.в. была установлена путем определения З.в. представительной выборки звезд вблизи сев. полюса мира (сев. полярный ряд). По ним определялись З.в. всех др. звезд. Это логарифмическая шкала, на к-рой звезды 1-й величины в 100 раз ярче звезд 6-й величины. По мере роста точности измерений пришлось вводить десятые доли. Самые яркие звезды ярче 1-й величины, а нек-рые даже имеют отрицательные звездные величины.

Масса звездная – параметр, непосредст­венно определяемый только для компонентов двойных звезд с известными орбитами и расстояниями (M1 +M2 = R3/T2). Т.о. установлены массы лишь нескольких десятков звезд, но для гораздо больше­го числа массу можно определить из зависимости масса – светимость. Массы больше 40 солнечных и менее 0,1 солнечных очень редки. Массы большинства звезд меньше солнечной. Температура в центре таких звезд не может дости­гать уровня, при котором начинаются реакции ядерного синтеза, и источником их энергии является только сжа­тие Кельвина – Гельмгольца. Такие объекты называют­ся коричневыми карликами.

Масса—светимость соотношение , найденное в 1924 г. Эддингтоном соотношение между светимостью L и звездной массой М. Соотно­шение имеет вид L/Lс = (М/Мс)а, где Lс и Мс — светимость и масса Солнца соответствен­но, значение а обычно лежит в диапазоне 3—5. Соотно­шение следует из того факта, что наблюдаемые св-ва нормальных звезд определяются главным образом их массой. Это соотношение для звезд-карликов хорошо согласуется с наблюдениями. Считается, что она справедлива также для сверхгиган­тов и гигантов, хотя их масса плохо поддается прямым измерениям. Соотношение не применимо к белым карликам, т.к. завышает их светимость.

Температура звездная – температура некоторой области звезды. Относится к числу важнейших физических характеристик любого объекта. Однако из-за того, что температура различных областей звезды отличается, а также из-за того, что температура – термодинамическая величина, которая зависит от потока электромагнитного излучения и присутствия различных атомов, ионов и ядер в некоторой области звездной атмосферы, все эти различия объединяют в эффективную температуру, тесно связанную с излучением звезды в фотосфере. Эффективная температура, параметр, характеризующий полное кол-во энергии, из­лучаемой звездой с единицы площади ее поверхности. Это однозначный метод описания звездной температуры. Э.т. определяется через температуру абсолютно черного те­ла, которое бы, согласно закону Стефана—Больцмана, излучало такую же мощность на единицу площади по­верхности, как и звезда. Хотя спектр звезды в деталях значительно отличается от спектра абсолютно черного тела, тем не менее эффективная температура характеризует энергию газа во внешних слоях звездной фотосферы и позволяет, используя закон смещения Вина (лmax=0,29/Т), определить, на какую длину волны приходится максимум звездного излучения, а следовательно и цвет звезды.

По размерам звезды делятся на карлики, субкарлики, нормальные звезды, гиганты, субгиганты и сверхгиганты.

Спектр звезд зависит от ее температуры, давления плотности газа ее фотосферы, силы магнитного поля и хим. состава.

Спектральные классы, классифика­ция звезд по их спектрам (в первую очередь по относит, интенсивностям спектральных линий), впервые введен­ная итал. астрономом Секки. Ввел буквенные обозна­чения, к-рые были модифицированы по мере расширения знаний о внутр. строении звезд. Цвет звезды зависит от темп-ры ее поверхности, поэтому в совр. спектральной классификации Дрэпера (гарвардс­кой) С.к. расположены в порядке убывания темп-ры:

Герцшпрунга – Ресселла диаграмма, график, позволяющий определить две основные характеристики звезд, выражает связь между абсолютной звездной величиной и температурой. Названа в честь датского астронома Герцшпрунга и американского астронома Ресселла, опубликовавших первую диаграмму в 1914 г. Самые горячие звезды лежат в левой диаграммы, а звезды самой высокой светимости – вверху. От верхнего левого угла к нижнему правому проходит главная последовательность, отражающая эволю­цию звезд, и заканчивающуюся звездами-карликами. Большинство звезд принадлежит этой последователь­ности. Солнце относится также к этой последователь­ности. Выше этой последователь­ности располагаются в указанном порядке субгиганты, сверхгиганты и гиганты, ниже – субкарлики и белые карлики. Эти группы звезд называются классами светимости.

Условия равновесия: как известно, звёзды являются единственными объектами природы, внутри которых происходят неуправляемые термоядерные реакции синтеза, которые сопровождаются выделением большого количества энергии и определяют температуру звёзд. Большинство звёзд находятся в стационарном состоянии, т. е. не взрываются. Некоторые звёзды взрываются (так называемые новые и сверхновые звёзды). Почему же в основном звёзды находятся в равновесии? Сила ядерных взрывов у стационарных звёзд уравновешивается силой тяготения, вот почему эти звёзды сохраняют равновесие.

 

17. Физический смысл закона Стефана-Больцмана и его применение для определения физических характеристик звезд.

 

Стефана—Больцмана закон, соотно­шение между полной мощностью излучения абсолютно черного тела и его темп-рой. Полная мощность еди­ничной площади излучения в Вт на 1 м2дается форму­лой Р = у Т4, где у = 5,67*10-8 Вт/м2 К4 — постоянная Стефана—Больцмана, Т — абсолютная температура абсолютного черного тела. Хотя астроном, объекты редко излучают, как абсолютно черное тело, их спектр излучения часто является удач­ной моделью спектра реального объекта. Зависимость от температуры в 4-й степени является очень сильной.

e – энергия излучения единицы поверхности звезды

L – светимость звезды, R – радиус звезды.

С помощью формулы Стефана-Больцмана и закона Вина определяют длину волны, на которую приходится максимум излучения:

lmaxT = b, b – постоянная Вина

Можно исходить из обратного, т. е. с помощью светимости и температуры определять размеры звёзд

Дата: 2019-05-29, просмотров: 340.