Свет и его основные свойства
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

 

Спектр электромагнитных излучений представлен на рисунке. К оптическому диапазону традиционно относят электромагнитные волны длиной  м. Однако практически из данного диапазона средствами оп-тоэлектроники используется область 0,1-100 мкм. Это обстоятельство не является случайным. По энергетической шкале данному диапазону соответствует область энергий 0,01-10 эВ. Кванты света с такой энергией способны возбуждать только валентные электроны в собственных и примесных полупроводниках. Действительно, ширина запрещенной зоны широкозонных полупроводников составляет единицы электронвольт, а энергия возбуждения примесных атомов в германии и кремнии - сотые доли электронвольт. Вне этого интервала энергий взаимодействия света с веществом носят качественно иной характер. Так, при углублении в коротковолновую область спектра начинает сказываться возбуждение электронов внутренних оболочек атома, а в длинноволновой области, когда фотоны уже не способны ионизировать атомы вещества, их воздействие проявляется в виде экситонной и фотонной генерации. Весь оптический диапазон разбит на три основные области:

1) 0,75 мкм - инфракрасная (ИК);

2) 0,395 0,75 мкм - видимая (видимый свет);

3) 0,395 мкм - ультрафиолетовая (УФ).

Каждая из этих областей делится на несколько поддиапазонов (см. рис. 1.1).

Как известно, свет обладает одновременно волновой и корпускулярной природой. В волновом аспекте он представляет собой электромагнитные колебания, излучаемые атомами вещества при изменении их энергетического состояния. Эти волны распространяются в вакууме со скоростью с = 299792458 м/с, а в веществе с меньшей скоростью где показатель преломления среды. Частота V и длина волны А. связаны соотношением т.е. в вакууме

Световая монохроматическая волна создается взаимно ортогональными и синусоидально изменяющимися во времени и пространстве электрическим и магнитным полями, перпендикулярными направлению ее распространения. Световая волна может быть когерентной, если все атомы вещества излучают волны, фаза и направление распространения которых совпадают, либо некогерентной, если каждый атом излучает оптическую волну, имеющую независимые фазу и направление распространения, случайным образом меняю щиеся во времени. Фотоны рассматриваются как корпускулы, когда речь идет о взаимодействии света с веществом. В этом случае монохроматическое излучение можно представить как поток элементарных частиц, каждая из которых обладает элементарной энергией , где = 6,626 • 10-34 Дж • с - постоянная Планка. В веществе электроны связаны с атомами, и чтобы стать свободными, они должны получить энергию , равную энергии их связи. При поглощении фотона атомом происходит освобождение электрона, если  т.е. . Максимальная длина волны излучения, способная вызвать освобождение электрона, называется пороговой длиной волны т. е. [мкм] = 1,237/ [эВ].

 

Таблица 3.1 Основные энергетические и фотометрические величины


Рис. 3.1. Спектр электромагнитных излучений [1]

 


Энергетическая фотометрия

 

Величины, относящиеся к оптическому излучению, можно оценивать либо с учетом произведенного зрительного впечатления (визуальная фотометрия), либо исключительно по количеству энергии, ее распределению в пространстве и времени (энергетическая фотометрия). Основным параметром системы энергетических величин является поток излучения - средняя

мощность, передаваемая оптическим излучением за время, значительно большее периода электромагнитных колебаний.

Спектральный состав излучения характеризуется спектральным распределением потока излучения - функцией . Таким образом, мощность, переносимую потоком излучения во всем интервале длин волн, определяют

 

 (1.1)

 

Основные величины, характеризующие энергетические и визуальные параметры оптического излучения, приведены в табл. 1.1 [2, 3].

В некоторых случаях, когда в качестве основного параметра при описании энергетической системы принимают энергию излучения, связь энергии с потоком излучения можно записать в дифференциальной форме

 

Оба варианта описания равнозначны и отличаются разве что формой написания основных формул. Рассмотрим подробнее основные фотометрические величины.

Энергетическая сила света (сила излучения) - пространственная плотность потока излучения, определяемая отношением потока излучения к телесному углу (в стерадианах), в пределах которого заключен этот поток

 

 

где - телесный угол, имеющий в вершине источник излучения, определяется как отношение площади сферической поверхности внутри конуса этого угла к квадрату радиуса сферы (рис. 1.2)

 

 

Энергетическая светимость Мс(поверхностная плотность потока излучения) - поток излучения, отнесенный к единице площади излучающей поверхности

 

 

где - площадь поверхности источника излучения. Необходимо отметить,

что светимость недостаточно полно характеризует параметры излучателя, и для полной характеристики необходимо знать направленность потока излучения.

Энергетическая яркость -сила излучения с единицы излучающей поверхности в данном направлении, отнесенная к площади ортогональной проекции излучающей поверхности на плоскость, перпендикулярную указанному направлению (рис. 3.2)

 

 ,(1.6)

 

где - угол между нормалью К излучающей поверхности и направлением, в котором производится изме-

 

с. 3.2. Пояснения к определению силы света

 

рение силы излучения; - энергетическая сила света в направлении

 - площадь элемента поверхности источника. Необходимо отметить, что яркость не является основной характеристикой источника. Например, у двух излучателей, обладающих одинаковой яркостью, но разной площадью светящейся поверхности, можно с помощью оптической системы уравнять наблюдаемые площади свечения. В этом случае излучатель с большей активной площадью окажется ярче в число раз, равное отношению (если

принять ).

Энергетическая освещенность  (плотность мощности) - мощность потока излучения, приходящаяся на единицу площади облучаемой поверхности

 

 (1.7)

 

где - площадь облучаемой поверхности.

В случае, когда приходится иметь дело с равнояркими источниками, для определения силы света и потока излучения от тел простой формы легко получить следующие расчетные формулы:

 

Рис. 1.4. Диаграммы направленности равноярких излучателей: а - плоского; б - шарообразного; в – цилиндрического

 

1) для плоской излучающейв одну сторону площадки (рис. 1.4, а)

 

2) для шара диаметром (рис. 1.4, б)

 

3) для цилиндра с неизлучающимиторцами (рис. 1.4,в)

 

 

Связь между интегральными и спектральными характеристиками определяется выражениями

 

 

Визуальная фотометрия

 

При определении мощности излучения по производимому им световому ощущению, т.е. по реакции глаза человека, пользуются световым потоком и другими соответствующими величинами (см.табл.1.1). Причем учет чувствительности глаза к различным участкам видимого спектра производится с помощью кривой относительной спектральной световой эффективности У(Х) (старое название - кривая дневной видности) (рис. 1.5).

Для длины волны = 0,555 мкм эта чувствительность максимальна: = 1,0. Различные величины в визуальной фотометрии можно оценить умножением соответствующей энергетической величины на коэффициент где - кривая видности, а - эмпирический коэффициент, который взят из определения канделы*. Тогда


 

для монохроматического излучения с диной волны можно записать

 

 

Для непрерывного спектра излучений полный поток можно получить суммированием потоков, соответствующих различным длинам волн спектра

 

 

где величина представляет собой поток заключенный в диа-

пазоне от Если в качестве пределов интегрирования подставить

значения 0,38 и 0,76 мкм, соответствующие границам видимого диапазона, то можно оценить эффективный поток для человеческого глаза. Аналогичным образом может быть проведена оценка и для любого другого селективного фотодетектора. В этом случае в формулу (1.17) необходимо подставить вместо кривой видности функцию относительной спектральной чувст-

вительности детектора

Выражения, аналогичные (1.16) и (1.17), можно записать для любой величины в визуальной фотометрии из соответствующей ей энергетической величины Тогда для монохроматического излучения

а для непрерывного спектра излучений, заключенного между длинами волн  соответственно имеем

 

 

В таб. 1.2 приведены оценочные значения величин яркости и освещенности, создаваемых различными источниками света.

 

 




Дата: 2019-05-29, просмотров: 222.