Синтаксический анализатор (синтаксический разбор) — это часть компилятора, которая отвечает за выявление основных синтаксических конструкций входного языка. В задачу синтаксического анализа входит: найти и выделить основные синтаксические конструкции в тексте входной программы, установить тип и проверить правильность каждой синтаксической конструкции и, наконец, представить синтаксические конструкции в виде, удобном для дальнейшей генерации текста результирующей программы.
В основе синтаксического анализатора лежит распознаватель текста входной программы на основе грамматики входного языка. Как правило, синтаксические конструкции языков программирования могут быть описаны с помощью КС-грамматик, реже встречаются языки, которые, могут быть описаны с помощью регулярных грамматик. Чаще всего регулярные грамматики применимы к языкам ассемблера, а языки высокого уровня построены па основе синтаксиса КС-языков. Распознаватель дает ответ на вопрос о том, принадлежит или нет цепочка входных символов заданному языку. Однако, как и в случае лексического анализа, задача синтаксического разбора не ограничишься только проверкой принадлежности цепочки заданному языку. Необходимо выполнить все перечисленные выше задачи, которые должен решить синтаксический анализатор. В таком варианте анализатор уже не является разновидностью МП-автомата — его функции можно трактовать шире. Синтаксический анализатор должен иметь некий выходной язык, с помощью которого он передает следующим фазам компиляции не только информацию о найденных и разобранных синтаксических структурах. В таком случае он уже является преобразователем с магазинной памятью — МП-преобразователем. Синтаксический разбор — это основная часть компилятора на этапе анализа. Без выполнения синтаксического разбора работа компилятора бессмысленна, в то время как лексический разбор в принципе является необязательной фазой. Все задачи по проверке синтаксиса входного языка могут быть решены на этапе синтаксического разбора. Сканер только позволяет избавить сложный по структуре синтаксический анализатор от решения примитивных задач по выявлению и запоминанию лексем исходной программы.
Выходом лексического анализатора является таблица лексем (или цепочка лексем). Эта таблица образует вход синтаксического анализатора, который исследует только один компонент каждой лексемы — ее тип. Остальная информация о лексемах используется на более поздних фазах компиляции при семантическом анализе, подготовке к генерации и генерации кода результирующей программы. Синтаксический анализ (пли разбор) — это процесс, в котором исследуется таблица лексем и устанавливается, удовлетворяет ли она структурным условиям, явно сформулированным и определении синтаксиса языка.
Синтаксический анализатор воспринимает выход лексического анализатора и разбирает его в соответствии с грамматикой входного языка. Однако в грамматике входного языка программирования обычно не уточняется, какие конструкции следует считать лексемами. Примерами конструкций, которые обычно распознаются во время лексического анализа, служат ключевые слова, константы и идентификаторы. Но эти же конструкции могут распознаваться и синтаксическим анализатором. На практике не существует жесткого правила, определяющего, какие конструкции должны распознаваться на лексическом уровне, а какие надо оставлять синтаксическому анализатору. Обычно это определяет разработчик компилятора исходя из технологических аспектов программирования, а также синтаксиса и семантики входного языка Далее рассмотрены технические аспекты, связанные с реализацией синтаксических анализаторов для использования результатов их работы на этане генерации кода. Тем не менее, основу любого синтаксического анализатора всегда составляет распознаватель, построенный на основе какого-либо класса КС-грамматик. Поэтому главную роль и том, как функционирует синтаксический анализатор и какой алгоритм лежит в его основе, играют принципы построения распознавателей КС-языков. Без применения этих принципов невозможно выполнить эффективный синтаксический разбор предложений входного языка.
Дерево разбора. Преобразование дерева разбора в дерево операций
Результатом работы распознавателя КС-грамматики входного языка является последовательность правил грамматики, примененных для построения входной цепочки. По найденной последовательности, зная тип распознавателя, можно построить цепочку вывода или дерево вывода. В этом случае дерево вывода выступает в качестве дерева синтаксического разбора и представляет собой результат работы синтаксического анализатора в компиляторе.
Однако ни цепочка вывода, ни дерево синтаксического разбора не являются целью работы компилятора. Дерево вывода содержит массу избыточной информации, которая для дальнейшей работы компилятора не требуется. Эта информация включает в себя все нетерминальные символы, содержащиеся и узлах дерева, — после того как дерево построено, они не несут никакой смысловой нагрузки и не представляют для дальнейшей работы интереса.
Для полного представления о типе и структуре найденной и разобранной синтаксической конструкции входного языка в принципе достаточно знать последовательность номеров правил грамматики, примененных для ее построения. Однако форма представления этой достаточной информации может быть различной как в зависимости от реализации самого компилятора, так от фазы компиляции. Эта форма напивается внутренним представлением программы.
В синтаксическом дереве внутренние узлы (вершины) соответствуют операциям, а листья представляют собой операнды. Как правило, листья синтаксического дерена сляпаны с записями в таблице идентификаторов. Структура синтаксического дерева отражает синтаксис языка программирования, на котором наш капа исходная программа.
Синтаксические деревья могут быть построены компилятором для любой части входной программы. Не всегда синтаксическому дереву должен соответствовать фрагмент кода результирующей программы — например, возможно построение синтаксических деревьев для декларативной части языка. В этом случае операции, имеющиеся в дереве, не требуют порождения объектного кода, но несут информацию о действиях, которые должен выполнить сам компилятор над соответствующими элементами. В том случае, когда синтаксическому дереву соответствует некоторая последовательность операций, влекущая порождение фрагмента объектного кода, говорят о дереве операций.
Дерево операций можно непосредственно построить из дерева вывода, порожденного синтаксическим анализатором. Для этого достаточно исключить из дерева вывода цепочки нетерминальных символов, а также узлы, не несущие семантической нагрузки при генерации кода. Примером таких узлов могут служить различные скобки, которые меняют порядок выполнения операции и операторов, но после построения дерева никакой смысловой нагрузки не несут, гак каким не соответствует никакой объектным код.
То, какой узел в дерене является операцией, а какой — операндом, никак невозможно определить из грамматики, описывающей синтаксис входного языка. Также ниоткуда не следует, каким операциям должен соответствовать объектный код в результирующей программе, а каким — нет. Все это определяется только исходя из семантики — «смысла» — языка входной программы. Поэтому только разработчик компилятора может четко определить, как при построении дерева операции должны различаться операнды и сами операции, а также то, какие операции являются семантически незначащими для порождения объектного кода.
Алгоритм преобразования дерева семантического разбора и дерево операции можно представить следующим образом.
Шаг 1. Если в дереве больше не содержится узлов, помеченных нетерминальными символами, то выполнение алгоритма завершено; иначе — перейти к шагу 2
Шаг. 2. Выбрать крайний левый узел дерена, помеченный нетерминальным символом грамматики и сделать его текущим. Перейти к шагу 3.
Шаг 3. Если текущий узел имеет только один нижележащий узел, то текущий узел необходимо удалить из дерена, а связанный с ним узел присоединить к узлу вышележащего уровня (исключить из дерена цепочку) и вернуться к шагу 1; иначе – перейти к шагу 4.
Шаг 4. Если текущий узел имеет нижележащий узел (лист дерева), помеченный терминальным символом, который не несет семантической нагрузки, тогда этот лист нужно удалить из дерева и вернуться к шагу 3; иначе — перейти к шагу 5.
Шаг 5. Если текущий узел имеет один нижележащий узел (лист дерева), помеченный терминальным символом, обозначающим знак операции, а остальные узлы помечены как операнды, то лист, помеченный знаком операции, надо удалить из дерева, текущий узел пометить этим знаком операции и перейти к шагу 1; иначе — перейти к шагу 6.
Шаг 6. Если среди нижележащих узлов для текущего узла есть узлы, помеченные нетерминальными символами грамматики, то необходимо выбрать крайний левый среди этих узлов, сделать его текущим умом и перейти к шагу 3: иначе — выполнение алгоритма завершено.
Автоматизация построения синтаксических анализаторов (программа YACC)
При разработке различных прикладных программ часто возникает задача синтаксического разбора некоторого входного текста. Конечно, ее можно всегда решить, полностью самостоятельно построив соответствующий анализатор. И хотя задача выполнения синтаксического разбора встречается не столь часто, как задача выполнений лексического разбора, но все-таки и для ее решения были предложены соответствующие программные средства.
Автоматизированное построение синтаксических анализаторов может быть выполнено с помощью программы YACC. Программа YACC (Yet Another Compiler Compiler) предназначена для построения синтаксического анализатора контекстно-свободного языка. Анализируемый язык описывается с помощью грамматики к пиле, близком форме Бэкуса— Наура (нормальная форма Бэкуса—Наура — НФБН). Результатом работы YACC является исходный текст программы синтаксического анализатора. Анализатор, который порождается YACC, реализует восходящий LALR(l) распознаватель.
Как и программа LEX, служащая дли автоматизации построении лексических анализаторов, программа YACC тесно связана с историей операционных систем типа UNIX. Эта программа входит в поставку многих версий ОС UNIX или Linux. Поэтому чаще всего результатом работы YACC является исходный текст синтаксического распознавателя на языке С, Однако существуют версии YACC, выполняющиеся под управлением ОС, отличных от UNIX, и порождающие исходный код на других языках программирования (например, Pascal). Принцип работы YACC похож на принцип работы LEX: на вход поступает файл, содержащий описание грамматики заданного КС-языка, а на выходе получаем текст программы синтаксического распознавателя, который, естественно, можно дополнять и редактировать, как и любую другую программу на заданном языке программирования.
Исходная грамматика для YACC состоит из трех секций, разделенных символом %%, — секции описаний, секции правил, в которой описывается грамматика, и секции программ, содержимое которой просто копируется в выходной файл. Например, ниже приведено описание простейшей грамматики для YACC, которая соответствует грамматике арифметических выражений:
%token a
%start e
%
e : e ‘+‘ m | e ‘-‘ m | m
m : m ‘*’ t | m ‘/’ t | t
a : a | ‘(’ e ‘)’ :
%%
Секция описаний содержит информацию о том, что идентификатор а является лексемой (терминальным символом) гpамматики, а символ е — ее начальным нетерминальным символом.
Грамматика, записана обычным образом — идентификаторы обозначают терминальные и нетерминальные символы; символьные константы типа '+' и '-' считаются терминальными символами. Символы :, |, ; принадлежат к метаязыку YACC и читаются согласно НФБН «есть по определению», «или» и «конец правила» соответственно.
В отличие от LEX, который всегда способен состроить лексический распознаватель, если входной файл содержит правильное регулярное выражение, YACC не всегда может построить распознаватель, даже если входной язык задан правильной КС-грамматикой. Ведь заданная грамматика может и не принадлежать к классу LALR(l). В этом случае YACC выдаст сообщение об ошибке (наличии неразрешимого LALR(t) конфликта в грамматике) при построении синтаксического анализатора. Тогда пользователь должен либо преобразовать грамматику, либо задать YACC некоторые дополнительные правила, которые могут облегчить построение анализатора. Например, YACC позволяет указать правила, явно задающие приоритет операций и порядок их выполнения (слева направо или справа налево).
С каждым правилом грамматики может быть связано действие, которое будет выполнено при свертке по данному правилу. Оно записывается в виде заключенной в фигурные скобки последовательности операторов языка, на котором порождается исходный текст программы распознавателя (обычно это язык С). Последовательность должна располагаться после правой части соответствующего правила. Также YACC позволяет управлять действиями, которые будут выполняться распознавателем в том случае, если входная цепочка не принадлежит заданному языку. Распознаватель имеет возможность выдать сообщение об ошибке, остановиться либо же продолжить разбор, предпринял некоторые действия, связанные с попыткой локализовать либо устранить ошибку во входной цепочке.
Дата: 2019-05-29, просмотров: 217.