Группа 408 ФЭЛ
Шабля Олеся Леонидовна
Оптическая схема лазерного виброметра
В основе оптической схемы виброметра лежит классическая схема интерферометра Майкельсона. Базовые структурные элементы оптической системы виброметра (рис.2): лазерный источник монохроматического излучения; телескопическая система, выполняющая функции приемо-передающей "оптической антенны"; оптическая система сопряжения волновых фронтов сигнальной и опорной волны типа "кошачий глаз"; фотоприемные модули балансного типа; оптический делитель-смеситель для формирования и пространственного совмещения опорного и сигнального лазерных пучков.
Сложность и особенности схемы обусловлены техническим назначением виброметра и связаны со значительным (на 5–7 порядков) ослаблением принимаемой световой мощности лазерного пучка, направляемого на объект, а также со спектр-структурой распределения интенсивности волнового фронта диффузно отраженного излучения лазера.
Лазерный пучок с линейной поляризацией от модифицированного лазера ГН-2П (λ=0,63 мкм) поворотными призмами 2 и 3 направляется на поляризующий делитель 4, где разделяется на два пучка равной мощности: сигнальный (трасса 4, 5, 6, 7,20) и опорный (трасса 4, 11, 10, 9, 8) со взаимно-ортогональными поляризациями. Телескопическая система (6, 7) в сигнальном плече интерферометра (кратность увеличения 14×) предназначена для фокусировки излучения на поверхности объекта. Эта фокусировка должна быть достаточной для того, чтобы спекл-структура фронта отраженной волны ("спекл-поле") воспринималась, при соответствующем наведении излучения на объект, как квазиоднородная монохроматическая волна. Четвертьволновые фазовые пластины (5, 10) производят поворот поляризации сигнального и опорного пучков на 90° относительно исходных. Это необходимо для беспрепятственного прохождения ими поляризующего делителя (4) в направлении к неполяризующему делителю (12), ориентированному к пучкам под углом 45° и разделяющему каждый из них на два идентичных пучка. Лазерные пучки после делителя (12) попадают в фотоприемные модули (13, 14, 15) и (17, 18, 19), в состав которых входят по два фотоприемника на основе фотодиодов КДФ-113 и по одному делителю-поляризатору типа (4). Указанная на схеме ориентация делителей под углом 45° обеспечивает формирование сдвинутых по фазе на 180° интерференционных сигналов в каждой паре фотоприемников: (14, 15) и (18, 19) соответственно. Это позволяет при вычитании инвертированных электрических сигналов с выходов фотоприемников улучшить отношение сигнал/шум. Фазовая пластина (16) осуществляет относительный сдвиг фазы оптических сигналов на четверть периода, чтобы в фотоприемных модулях формировались квадратурные электрические сигналы.
Технические характеристики портативного лазерного виброметра
Диапазон частот колебаний.......................80 Гц–11 кГц
Диапазон измерения виброскорости.........0,01–50 мм/с
Погрешность измерения виброскорости:
в диапазоне 1–50 мм/с ...................................10%
в диапазоне 0,01–1 мм/с..................................20%
Напряжение питания ............................................. 2 В
Потребляемая мощность .................................... 20 Вт
Габариты .......................................... 430×240×160 мм
Масса ................................................................12 кг
Прибор комплектуется карманным персональным компьютером для индикации результатов измерений в режиме осциллографа и анализатора спектра. При этом возможны дальнейшая математическая обработка и документирование результатов на флэш-карте. Лазерный виброметр метрологически обеспечен рабочим эталоном единиц параметров вибрации, который разработан совместно с виброметром и также включен в Государственный реестр средств измерений.
Индустриальный датчик вибрации IVS -200
Промышленные сенсоры IVS
1. IVS-200 индустриальный датчик вибрации
2. IVS-300 цифровой датчик вибрации
Принадлежности:
· Дефлектор луча
· Комплект программ
· Дополнительные части
Применения
• Измерение вибрации электрических двигателей, компрессоров, насосов и т.п.
• Контроль шума турбомашин, кондиционеров, коробок передач, регулирующих устройств
• Контроль различных автомобильных компонентов и производимых изделий в поточной линии
• Испытание микроэлектроники, MEMS сенсоров и приводов головок
• Измерение вибрации объектов исключающих установку
датчиков (ограничение по весу, температуре, размеру)
• Анализ ультразвукового и медицинского оборудования.
Датчик IVS-200 имеет два разъема на задней панели. Вход питания (±11-14.5 В), качество оптического сигнала и выход сигнала виброскорости - аналоговый сигнал напряжения (± 4В) пропорциональный скорости вибрации объекта измерения. Второй разъём предназначен для использования с дополнительным блоком IVS-310 - дисплеем уровня сигнала. IVS- 310 может быть подключен к IVS-200 для контроля качества сигнала скорости или обслуживания датчика. IVS-200 снабжен 5 метровым соединительным кабелем для установки в системы управления производственными процессами. Дополнительный стационарно устанавливаемый блок IVS-320 содержит встроенный блок питания, дисплей.
Корпус IVS-200
Разъемы | 1. Разъём питания, уровня оптического сигнала и сигнала виброскорости 2. Разъём для IVS-310 индикатора качества сигнала |
Исполнение | IP-64 стандарт |
Размер | 255 мм x 114 мм x 52 мм (281 мм с линзой) |
Вес | < 2.8 кг |
Оптика IVS-200
Группа 408 ФЭЛ
Шабля Олеся Леонидовна
Лазерный виброметр повышенной чувствительности
Лазерная виброметрия – современный, качественно новый уровень измерения параметров механических колебаний объектов. Уникальные физические особенности лазерных методов определяют многие их достоинства. Это возможность дистанционного бесконтактного измерения вибрации и отсутствие влияния на резонансные свойства объектов, в том числе микроскопических размеров; возможность измерений без предварительной подготовки поверхности объекта и оперативное измерение вибраций в различных точках объекта в опасной для персонала зоне (химически агрессивной, с высокой температурой, радиацией и т.д.).
ФГУП "ННИПИ "Кварц" разработал первый отечественный портативный лазерный виброметр повышенной чувствительности. В 2007 году после проведения государственных испытаний прибор включен в Государственный реестр средств измерений Российской Федерации.
Лазерный виброметр предназначен в первую очередь для дистанционного измерения виброскорости исследуемого объекта или его части в пределах от 0,01 до 50 мм/с на виброчастотах от 80 Гц до 11 кГц с возможностью расширения диапазона виброчастот в сторону низких частот до 10 Гц. Измерительная дистанция от лазерного виброметра до испытуемого объекта составляет от 1,5 до 10 м и более. Напряжение питания виброметра – 12 В постоянного тока от переносной аккумуляторной батареи или от источника питания, подключаемого к сети переменного тока 220 В (50 Гц). Потребляемая мощность – 15–20 Вт (в зависимости от режима работы).
Принцип работы лазерного виброметра основан на доплеровском сдвиге частоты оптического (лазерного) излучения, отраженного от движущегося объекта. В этом случае применяют метод оптического гетеродинирования отраженного от объекта слабого оптического сигнала на основе двухлучевой интерференционной оптической схемы с последующим формированием квадратурных компонент электрического сигнала фотодетекторами балансного типа. Микропроцессоры, входящие в состав лазерного виброметра, производят цифровую обработку и анализ вибрационных сигналов. Результаты в виде спектрограмм или осциллограмм отображаются на экране внешнего компьютера, подключенного через каналы RS-232 или USB, разъемы которых размещены на панели управления прибора. Измерение параметров сигнала проводится при помощи подвижного маркера на экране дисплея.
В состав портативного лазерного виброметра входит карманный персональный компьютер (КПК). Он в графическом виде отображает результаты измерений на дисплее; управления режимами работы лазерного виброметра через виртуальную панель управления, в том числе режимами обработки сигнала и отображения его во временной (осциллограф) или в частотной (анализатор спектра) областях; выбирает пределы амплитудных измерений и длительности развертки в режиме осциллографа, а также частотную полосу обзора в режиме анализатора спектра и число усреднений реализаций спектров от 1 до 256; выполняет функцию установки линейного или логарифмического масштабов в режиме анализатора спектра и в режиме записи результатов измерений на флэш-карту в формате, выбранном оператором и с возможностью последующего воспроизведения на другом компьютере. Разработано программное обеспечение, которое позволяет управлять всеми перечисленными функциями и режимами при помощи стандартных компьютеров по каналам RS-232 или USB, что дает возможность включать лазерный виброметр в автоматизированные измерительные системы. В состав лазерного виброметра входят оптическая система, формирующая квадратурные составляющие доплеровского сигнала, и электронная система (рис.1).
Дата: 2019-05-29, просмотров: 209.