Расчет катодной защиты, подбор катодной станции
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

задание: Определить параметры катодной защиты подземного газопровода на территории квартала площадью 10 га

исходные данные:

На территории района, требующего защиты расположены газопроводы низкого и высокого давления следующих диаметров и длин:

D 200 мм – 732 м;

D150 мм – 624 м;

D 100 мм – 323 м;

D 89 мм – 70 м.

Коррозийная агрессивность грунта на территории защищаемого района от 15 до 50 Ом*м. Принимаем среднее значение  

Решение:

1. Определяем площадь поверхности газопроводов:

2. Т.к. рассчитываем только защиту газопроводов то удельный вес поверхности газопровода будет равна 100%

3. Определяем плотность поверхности газопровода, приходящаяся на единицу поверхности территории

4. Определяем среднюю плотность тока необходимого для защиты газопроводов

5. Определяем значение защитного тока, который необходим для обеспечения катодной поляризации подземного газопровода расположенного в данном районе

6. Определяем удельную плотность

7. Рассчитываем зону действия катодной станции

Полученный радиус действия катодной станции охватывает заданную территорию.

8. По таблице для тока  и  выбираем анодное заземление из железокремнистых электродов расположенных вертикально, тип И d=100мм; L=1,525м; n=6 с сопротивлением растеканию RА.З =0.993Ом.

9. Рассчитываем сопротивление дренажного кабеля.

Для кабеля АВРБ-3*16 длинной 100м сопротивление RКАБ. =0.0646 Ом*м

 

С учетом 30% запаса на развитие сети выбираем катодные станции типа ПКЗ-АР-М-2-у1(2) с параметрами U=48В; I=40А


 


БИОКОРРОЗИЯ И СРЕДСТВА ЗАЩИТЫ ОТ НЕЁ

Биокоррозия

БИОКОРРОЗИЯ (от греческого bios - жизнь и позднелатинского corrosio - разъедание), разрушение конструкционных материалов и противокоррозионных защитных покрытий под действием присутствующих в среде микроорганизмов (бактерий, грибов, водорослей, дрожжей). Первые сведения об участии микроорганизмов в коррозии материалов появились в конце 19 в. Освоение воздушного и водного пространств, недр Земли сопровождается неизбежным распространением микроорганизмов и увеличением масштабов биокоррозии. Заметный ущерб наносит биокоррозия в нефте- и газодобывающей промышленности (около 70% всех коррозионных разрушений), трубопроводному транспорту, морскому флоту, средствам связи и водоснабжения.

Общая теория биокоррозии отсутствует. Полагают, что в процессе жизнедеятельности микроорганизмов образуются продукты обмена веществ, повышающие коррозионную активность среды (минеральные и органические кислоты, щелочи, пероксиды, H2S и др.). В частности, быстрый выход из строя нефте- и газопроводов обусловлен деятельностью сульфатвосстанавливающих бактерий, повышающих агрессивность грунта и грунтовых вод в результате продуцирования H2S. Нек-рые виды тионовых бактерий вырабатывают H2SO4, понижая рН почвы и грунта до ~ 0,5. Биокоррозия подземных сооружений обусловлена в основном жизнедеятельностью сульфатвосстанавливающих, сероокисляющих и железоокисляющих бактерий, наличие которых устанавливают бактериологическими исследованиями проб грунта. Сульфатвосстанавливающие бактерии присутствуют во всех грунтах, но с заметной скоростью биокоррозия протекает только тогда, когда воды (или грунты) содержат 105-106 жизнеспособных бактерий в 1 мл (или в 1 г). Биокоррозия полимерных материалов связана с вырабатываемыми микроорганизмами ферментами, резко ускоряющими деструкцию макромолекул.

 

Дата: 2019-05-28, просмотров: 225.