ВВЕДЕНИЕ
Кондиционирование воздуха – это автоматизированное поддержание в закрытых помещениях всех или отдельных параметров воздуха (температура, относительная влажность, чистота и скорость движения воздуха) с целью обеспечения оптимальных условий наиболее благоприятных для самочувствия людей, ведения технологического процесса, обеспечение сохранности ценностей культуры.
Кондиционирование подразделяется на три класса:
1. Для обеспечения метеорологических условий, требуемых для технологического процесса при допускаемых отклонениях за пределами расчетных параметров наружного воздуха. В среднем 100 часов в год при круглосуточной работе или 70 часов в год при односменной работе в дневное время.
2. Для обеспечения оптимальных, санитарных или технологических норм при допускаемых отклонениях в среднем 250 часов в год при круглосуточной работе или 125 часов в год при односменной работе в дневное время.
3. Для обеспечения допустимых параметров, если они не могут быть обеспечены вентиляцией, в среднем 450 часов в год при круглосуточной работе или 315 часов в год при односменной работе в дневное время.
Нормативными документами установлены оптимальные и допустимые параметры воздуха.
Оптимальные параметры воздуха обеспечивают сохранение нормативного и функционального теплового состояния организма, ощущение теплового комфорта и предпосылки для высокого уровня работоспособности.
Допустимые параметры воздуха – это такое их сочетание, при котором не возникает повреждений или нарушения состояния здоровья, но может наблюдаться дискомфортные теплоощущения, ухудшение самочувствия и понижение работоспособности.
Допустимые условия, как правило, применяют в зданиях, оборудованных только системой вентиляции.
Оптимальные условия обеспечивают регулируемые системы кондиционирования (СКВ). Таким образом СКВ применяют для создания и поддержания оптимальных условий и чистоты воздуха в помещениях круглогодично.
Целью выполнения данной курсовой работы является закрепление теоретических знаний и приобретение практических навыков расчета, а также проектирование систем кондиционирования воздуха (СКВ).
В данной курсовой работе кондиционируемое помещение – это зрительный зал городского клуба на 500 мест в городе Одесса. Высота этого помещения – 6,3 м, площадь пола –289 м2, площадь чердачного покрытия –289 м2, объем помещения – 1820,7 м3.
ВЫБОР РАСЧЕТНЫХ ПАРАМЕТРОВ НАРУЖНОГО И ВНУТРЕННЕГО ВОЗДУХА
Расчетные параметры наружного воздуха.
Расчетные параметры наружного воздуха выбирают в зависимости от географического расположения объекта.
Таблица 1 – Расчетные параметры наружного воздуха.
Период года | Барометри- ческое дав- ление, гПа | Темпе- ратура, °С | Удельная энтальпия, кДж/кг | Относи- тельная влаж-ность, % | Влаго- содержа- ние, г/кг | Ско-рость ветра, м/с |
теплый | 1010 | 26,6 | 60 | 70 | 13,1 | 3,3 |
холодный | 1010 | -18 | -16,3 | 90 | 0,8 | 11 |
Расчетные параметры внутреннего воздуха.
Расчетные параметры внутреннего воздуха выбирают в зависимости от назначения помещения и времени года.
Таблица 2 – Расчетные параметры внутреннего воздуха.
Период года | Темпе- ратура, °С | Удельная энтальпия, кДж/кг | Относи- тельная влаж-ность, % | Влаго- содержа- ние, г/кг | Подвижность, м/с |
Теплый | 22 | 43 | 50 | 8,3 | 0,3 |
холодный | 20 | 45 | 45 | 9,8 | 0,3 |
Расчет теплопоступлений
Расчет теплопоступлений от людей
Тепловыделения в помещении от людей Qпол, Вт, определяют по формуле
Qпол = qпол·n,(1)
где qпол – количество полного тепла, выделяемого одним человеком, Вт;
n – число людей, чел.
Qяв = qяв·n,(2)
где qяв – количество явного тепла, выделяемого одним человеком, Вт;
n – число людей, чел.
- для холодного периода
Qпол = 120·285 = 34200 Вт
Qяв = 90·285 =25650 Вт
- для теплого периода
Qпол = 80·285 =22800 Вт
Qяв = 78·285 = 22230 Вт
Расчет теплопоступлений за счет солнечной радиации
Солнечная радиация Qр = 9400 Вт.
Расчет влаговыделений
Поступление влаги в помещение происходит от испарений с поверхности кожи людей и от их дыхания, со свободной поверхности жидкости, с влажных поверхностей материалов и изделий, а также в результате сушки материалов, химических реакций, работы технологического оборудования.
Влаговыделения от людей Wл, кг/ч, в зависимости от их состояния (покой, вид выполняемой ими работы) и температуры окружающего воздуха определяют по формуле
Wл = wл·n·10-3, (7)
где wл – влаговыделение одним человеком, г/ч;
n – число людей, чел.
Wлхол = 40·285·10-3 = 11,4 кг/ч
Wлтепл = 44·285·10-3 = 12,54 кг/ч
Расчет камеры орошения
Расчет ОКФЗ производим по методике ВНИИКондиционер.
а) теплый период
Определяем объемную производительность СКВ
L =12078м3/ч
Принимаем оросительную камеру типа ОКФЗ – 10, индекс 01,
исполнение 1, общее число форсунок nф = 18 шт.
Определяем коэффициент адиабатной эффективности процесса с учетом характеристик луча процесса камеры по формуле
Еа = ( J1 – J2 )/( J1 – Jпр ),(30)
где J1, J2 – энтальпия воздуха на входе, на выходе из камеры, соответственно,
кДж/кг;
Jпр -энтальпия предельного состояния воздухана J-d диаграмме,
кДж/кг.
Еа = ( 56,7 – 32,2 )/( 56,7 – 21 ) = 0,686
Коэффициент орошения определяем из графической зависимости Еа=f(μ).
Также графическим путем по значению μ находим численное значение коэф-
фициента приведенной энтальпийной эффективности Еп.
μ = 1,22
Еп = 0,42
Определяем относительный перепад температур воздуха
Θ = 0,33·сw·μ·(1/ Еп – 1/ Еа) (31)
Θ = 0,33·4,19·1,22·(1/ 0,42 – 1/ 0,686) = 1,586
Вычисляем начальную температуру воды в камере
tw1 = tв пр -Θ(J1 – J2)/ сw·μ, (32)
где tв пр – предельная температура воздуха, °С.
tw1 = 6,5 -1,586(56,7 – 32,2)/ 4,19·1,22 =3,32 °С
Рассчитываем конечную температуру воды (на выходе из камеры) по формуле
tw2 = tw1 + (J1 – J2)/ сw·μ(33)
tw2 = 1,32 + (56,7 – 32,2)/ 4,19·1,22 =9,11 °С
Определяем расход разбрызгиваемой воды
Gw = μ·G(34)
Gw = 1,22·14493,6 = 17682,2 кг/ч (~17,7 м3/ч)
Вычисляем расход воды через форсунку (производительность форсунки)
gф = Gw/nф (35)
gф = 17682,2 /42 = 421 кг/ч
Необходимое давление воды перед форсункой определяем по формуле
ΔРф = (gф/93,4)1/0,49 (36)
ΔРф = (421/93,4)1/0,49 = 21,6 кПа
Устойчивая работа форсунок соответствует 20 кПа ≤ ΔРф ≤ 300кПа. Условие выполняется.
Расход холодной воды от холодильной станции определяют по формуле
Gwх = Qхол/ сw(tw1 - tw2)(37)
Gwх = 47216/ 4,19(9,11 – 3,32) = 4935,8 кг/ч (~4,9м3/ч).
б) холодный период
В этот период года ОКФЗ работает в режиме адиабатического увлажнения воздуха.
Определяем коэффициент эффективности теплообмена по формуле
Еа = ( t1 – t2 )/( t1 – tм1 )(38)
Еа = ( 25 – 14,2 )/( 25 –13,1 ) = 0,908
Коэффициент орошения определяем из графической зависимости Еа=f(μ).
Также графическим путем по значению μ находим численное значение коэф-
фициента приведенной энтальпийной эффективности Еп.
μ = 1,85
Еп = 0,57
Вычисляем расход разбрызгиваемой воды по формуле (34)
Gw = 1,85·14493,6 = 26813,2 кг/ч (~26,8 м3/ч)
Определяем производительность форсунки по формуле (35)
gф = 26813,2 /42 = 638 кг/ч
Определяем требуемое давление воды перед форсунками по формуле (36)
ΔРф = (638/93,4)1/0,49 = 50,4 кПа
Вычисляем расход испаряющейся воды в камере по формуле
Gwисп = G(do – dс)·10-3(39)
Gwисп = 14493,6 (9,2 – 4,8)·10-3 = 63,8 кг/ч
Как видно из расчета, наибольший расход воды (26,8 м3/ч) и наибольшее давление воды перед форсунками (50,4 кПа) соответствуют холодному периоду года. Эти параметры принимаются за расчетные при подборе насоса.
Расчет воздухонагревателей
Расчет воздухонагревателей осуществляют на два периода года: вначале производят расчет на холодный период, затем – на теплый период года.
Также раздельно производят расчет воздухонагревателей первого и второго подогрева.
Целью расчета воздухонагревателей является определение требуемой и располагаемойповерхностей теплопередачи и режима их работы.
При поверочном расчете задаются типом и числом базовых воздухонагревателей, исходя из марки центрального кондиционера, то есть вначале принимают стандартную компоновку, а расчетом ее уточняют.
ВН1
- холодный период
При расчете вычисляют:
- теплоту, необходимую для нагрева воздуха, Вт
Qвоз = 18655,3Вт;
- расход горячей воды, кг/ч:
Gw = 3,6Qвоз/4,19(twн – twк) = 0,859Qвоз/(twн – twк) (40)
Gw =0,859·18655,3/(150 – 70) = 200,3 кг/ч;
В зависимости от марки кондиционера выбирают число и тип базовых теплообменников, для которых вычисляют массовую скорость движения воздуха в живом сечении воздухонагревателя, кг/(м2·с):
ρv = Gвоз/3600·fвоз,(41)
гдеfвоз – площадь живого сечения для прохода воздуха в воздухонагревателе, м2
ρv = 14493,6 /3600·2,070 = 1,94 кг/(м2·с);
- скорость движения горячей воды по трубам теплообменника, м/с
w = Gw/(ρw·fw·3600), (42)
где ρw – плотность воды при ее средней температуре, кг/м3;
fw – площадь сечения для прохода воды, м2.
w = 200,3/(1000·0,00148·3600) = 0,038 м/с.
Принимаем скорость, равную 0,1 м/с
- коэффициент теплопередачи, Вт/(м2·К)
К = а(ρv)qwr,(43)
где а, q, r – коэффициенты
К = 28(1,94)0,4480,10,129 = 27,8 Вт/(м2·К);
- среднюю разность температур между теплоносителями:
Δtср = (twн + twк)/2 – (tн + tк)/2 (44)
Δtср = (150 + 70)/2 – (-18 +28)/2 = 35°С
- требуемую площадь теплообмена, м2
Fтр = Qвоз/(К· Δtср) (45)
Fтр = 18655,3/(27,8· 35) = 19,2 м2
При этом необходимо выполнять следующее условие: между располагаемой поверхностьюFр (предварительно выбранным воздухонагревателем) и требуемой поверхностью Fтр запас поверхности теплообмена не должен превышать 15%
[(Fр - Fтр)/ Fтр]·100≤15%(46)
[(36,8 – 19,2)/ 19,2]·100 = 92%
Условие не выполняется, принимаем воздухонагреватель ВН1 с запасом.
ВН2
а) холодный период
Qвоз = 6447 Вт;
- расход горячей воды, кг/ч, по формуле (40)
Gw =0,859·6447/(150 – 70) = 69,2 кг/ч;
В зависимости от марки кондиционера выбирают число и тип базовых теплообменников, для которых вычисляют массовую скорость движения воздуха в живом сечении воздухонагревателя, кг/(м2·с), по формуле (41) ρv = 14493,6 /3600·2,070 = 1,94 кг/(м2·с);
- скорость движения горячей воды по трубам теплообменника, м/с, по формуле (42)
w = 69,2 /(1000·0,00148·3600) = 0,013 м/с.
Принимаем скорость, равную 0,1 м/с.
- коэффициент теплопередачи, Вт/(м2·К), по формуле (43)
К = 28(1,94)0,4480,10,129 = 27,8 Вт/(м2·К);
- среднюю разность температур между теплоносителями, по формуле (44)
Δtср = (150 + 70)/2 – (13,8 +14,2)/2 = 26°С
- требуемую площадь теплообмена, м2, по формуле (45)
Fтр = 6447/(27,8· 26) = 8,9 м2
Проверяем условие по формуле (46)
[(36,8 – 8,9)/ 8,9]·100 =313%
Условие не выполняется, принимаем воздухонагреватель ВН2 с запасом.
б) теплый период
По выше предложенным формулам (40)-(46) делаем перерасчет для теплого периода
Qвоз = 23369,5 Вт;
Gw =0,859·23369,5 /(70 – 30) = 501,8 кг/ч
ρv = 14493,6 /3600·2,070 = 1,94 кг/(м2·с);
w = 501,8 /(1000·0,00148·3600) = 0,094 м/с.
Для дальнейших расчетов принимаем скорость, равную 0,1 м/с.
К = 28(1,94)0,4480,10,129 = 27,88 Вт/(м2·К);
Δtср = (30 + 70)/2 – (12 +19)/2 = 34,5 °С
Fтр = 23369,5 /(27,88 · 34,5) = 24,3 м2
При этом необходимо выполнять следующее условие: между располагаемой поверхностьюFр (предварительно выбранным воздухонагревателем) и требуемой поверхностью Fтр запас поверхности теплообмена не должен превышать 15%
[(36,8 – 24,3)/ 24,3]·100 = 51%
Условие не выполняется, принимаем воздухонагреватель ВН2 с запасом.
Подбор воздушных фильтров
Для очистки воздуха от пыли в СКВ включают фильтры, конструктивное решение которых определяется характером этой пыли и требуемой чистотой воздуха.
Выбор воздушного фильтра осуществляют согласно [ 2, кн.2].
Исходя из имеющихся данных выбираем фильтр ФР1-3.
ВВЕДЕНИЕ
Кондиционирование воздуха – это автоматизированное поддержание в закрытых помещениях всех или отдельных параметров воздуха (температура, относительная влажность, чистота и скорость движения воздуха) с целью обеспечения оптимальных условий наиболее благоприятных для самочувствия людей, ведения технологического процесса, обеспечение сохранности ценностей культуры.
Кондиционирование подразделяется на три класса:
1. Для обеспечения метеорологических условий, требуемых для технологического процесса при допускаемых отклонениях за пределами расчетных параметров наружного воздуха. В среднем 100 часов в год при круглосуточной работе или 70 часов в год при односменной работе в дневное время.
2. Для обеспечения оптимальных, санитарных или технологических норм при допускаемых отклонениях в среднем 250 часов в год при круглосуточной работе или 125 часов в год при односменной работе в дневное время.
3. Для обеспечения допустимых параметров, если они не могут быть обеспечены вентиляцией, в среднем 450 часов в год при круглосуточной работе или 315 часов в год при односменной работе в дневное время.
Нормативными документами установлены оптимальные и допустимые параметры воздуха.
Оптимальные параметры воздуха обеспечивают сохранение нормативного и функционального теплового состояния организма, ощущение теплового комфорта и предпосылки для высокого уровня работоспособности.
Допустимые параметры воздуха – это такое их сочетание, при котором не возникает повреждений или нарушения состояния здоровья, но может наблюдаться дискомфортные теплоощущения, ухудшение самочувствия и понижение работоспособности.
Допустимые условия, как правило, применяют в зданиях, оборудованных только системой вентиляции.
Оптимальные условия обеспечивают регулируемые системы кондиционирования (СКВ). Таким образом СКВ применяют для создания и поддержания оптимальных условий и чистоты воздуха в помещениях круглогодично.
Целью выполнения данной курсовой работы является закрепление теоретических знаний и приобретение практических навыков расчета, а также проектирование систем кондиционирования воздуха (СКВ).
В данной курсовой работе кондиционируемое помещение – это зрительный зал городского клуба на 500 мест в городе Одесса. Высота этого помещения – 6,3 м, площадь пола –289 м2, площадь чердачного покрытия –289 м2, объем помещения – 1820,7 м3.
ВЫБОР РАСЧЕТНЫХ ПАРАМЕТРОВ НАРУЖНОГО И ВНУТРЕННЕГО ВОЗДУХА
Дата: 2019-05-28, просмотров: 292.