Продолжительность затвердевания непрерывнолитой заготовки
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Аннотация

 

В работе представлен расчет технологических параметров непрерывной разливки стали на четырехручьевой МНЛЗ криволинейного типа. Определены параметры жидкого металла для непрерывной разливки, выбраны диаметры каналов стаканов в сталеразливочном и промежуточном ковшах. Приведен расчет основных параметров систем охлаждения кристаллизатора и зоны вторичного охлаждения. Определена длительность разливки плавки и годовая производительность МНЛЗ при рабочей скорости вытягивания заготовки.

 

 



Содержание

 

Введение

1 Параметры жидкого металла

2 Продолжительность затвердевания непрерывнолитой заготовки

3 Скорость вытягивания заготовки

4 Скорость разливки и диаметр сталеразливочных стаканов

5 Параметры настройки кристаллизатора и системы вторичного охлаждения

6 Охлаждение кристаллизатора

7 Вторичное охлаждение заготовки

8 Длительность разливки плавки и производительность МНЛЗ

Заключение

Список использованных источников

 

 



Введение

Непрерывная разливка является в настоящее время основным способом разливки стали, при котором получают слябовые и сортовые заготовки. Качество непрерывнолитых заготовок во многом зависит от правильности выбора технологических параметров процесса разливки, который должен быть сделан с учетом типа машины непрерывного литья заготовок (МНЛЗ), размеров поперечного сечения заготовки, марки стали. Экспериментальное определение рациональных параметров разливки с учетом вышеперечисленных факторов – это сложный, дорогой, трудоемкий и длительный процесс. Современное состояние теории непрерывной разливки стали позволяет определить основные технологические параметры расчетным путем. Расчет технологических параметров непрерывной разливки стали всегда делается для конкретной МНЛЗ. Поэтому для расчета необходимо иметь данные о металлургической длине машины, высоте кристаллизатора, количестве и длине участков зоны вторичного охлаждения, способе вторичного охлаждения на каждом участке. В задании на выполнение расчета могут быть указаны как конструктивные параметры машины, так и источник информации для их выбора.

В данной курсовой работе определены:

– параметры жидкого металла (допустимое содержание вредных примесей и температура металла при разливке);

– продолжительность затвердевания заготовки;

– рабочая скорость вытягивания заготовки и диапазон допустимых скоростей вытягивания;

– скорость разливки металла и диаметр каналов стаканов в сталеразливочном и промежуточном ковшах;

– параметры настройки кристаллизатора и зоны вторичного охлаждения;

– режим охлаждения кристаллизатора;

– режим вторичного охлаждения заготовки;

– длительность разливки плавки и производительность МНЛЗ.



Параметры жидкого металла

Действующие стандарты, определяющие требования к химическому составу металла, допускают довольно высокое содержание вредных примесей – серы и фосфора. Непрерывная разливка металла с повышенным содержанием вредных примесей сопряжена с рядом трудностей. Так, например, повышенное серы требует снижения скорости разливки. В противном случае непрерывно-литые заготовки оказываются пораженными различными дефектами (чаще всего поверхностными или внутренними трещинами). Кроме того, при разливке такого металла возможно возникновение аварийных ситуаций, связанных с прорывами затвердевшей корки [2].

Разливаемая сталь марки 15 имеет следующий химический состав (по ГОСТ 1050–88), представленный в таблице 1.1 [3].

 

Таблица 1.1 – Химический состав разливаемой стали марки 15

С

Si

Mn

S

P

не более

0,12…0,19%

0,17…0,37%

0,35…0,65%

0,04%

0,035%

 

Обычно верхний предел содержания серы и фосфора в стали, разливаемой на МНЛЗ, устанавливается в интервале от 0,015 до 0,025%. Выбор конкретного значения предельного содержания вредных примесей определяется возможностями технологии выплавки и ковшевой обработки металла в сталеплавильном цехе. С учетом приведенной выше информации необходимо принять предельные значения допустимых содержаний серы и фосфора в металле. Принимаем верхний предел содержания фосфора 0,025%, верхний предел содержания серы 0,025%.

Температура разливаемого металла оказывает существенное влияние как на технологию непрерывной разливки, так и на качество получаемой заготовки. Наилучшие результаты получаются в том случае, когда металл в промежуточном ковше имеет перегрев над температурой ликвидус 20–300С:

 

 

где tпр – температура металла в промежуточном ковше, 0С;

tликв – температура ликвидус, 0С.

Температуру ликвидус для углеродистой стали рекомендуется определять по формуле:

 

 

где  – среднее содержание углерода в стали, %.

Принимаем среднее содержание углерода в стали марки 15 равным 0,15%.

Тогда:

;

 

Охлаждение кристаллизатора

 

Чаще всего в МНЛЗ используются сборные кристаллизаторы, в стенках которого имеется система вертикальных каналов для охлаждающей воды. Обычно каналы имеют диаметр 20 мм, а расстояние между ними 40…50 мм (принимаем 45 мм).

Основным показателем, характеризующим режим охлаждения кристаллизатора, является расход охлаждающей воды. Предварительно перед расчетом расхода воды необходимо, пользуясь вышеприведенными рекомендациями, выбрать диаметр каналов и определить их число. Расход воды на охлаждение кристаллизатора должен быть таким, чтобы выполнялись два условия:

3) температура воды на выходе из кристаллизатора не должна превышать 40…450С с тем, чтобы не происходило отложение растворенных в ней солей;

3) скорость движения воды в каналах должна быть не менее 2 м/с для того, чтобы предотвратить возникновение локальных перегревов.

Расход воды, обеспечивающий выполнение первого условия, определяется следующим образом. Сначала выбором или расчетом определяются исходные данные:

– температура воды на входе в кристаллизатор (принимаем 200С);

– температура воды на выходе из кристаллизатора (принимаем 420С);

– перепад температур воды в кристаллизаторе ∆tв (42–20 = 220С);

– средний перепад температуры между температурой жидкого металла и температурой поверхности кристаллизующейся заготовки ∆t (принимаем 3700С);

– средняя толщина слоя затвердевшего металла в кристаллизаторе ξ0:

 

,

 

где Кз – коэффициент затвердевания, мм/мин0,5;

τ – продолжительность затвердевания, мин;

h – расстояние до середины кристаллизатора, м;

- рабочая скорость вытягивания заготовки, м/мин.

Принимаем величину коэффициента затвердевания Кз = 26 мм/мин0,5.

Расчет ведем для середины кристаллизатора. Длина кристаллизатора по заданию 950 мм. Рабочая скорость вытягивания – 0,76 м/мин. Кристаллизатор заполняют не полностью. Принимаем, что уровень жидкого металла в кристаллизаторе составляет 850 мм, т.е. расстояние до середины кристаллизатора составит 425 мм.

Тогда:

 мм.

После этого вычисляется средняя плотность теплового потока от заготовки к кристаллизатору:

 

,

 

где  – средний тепловой поток, Вт/м2;

 – коэффициент теплопроводности затвердевшего металла, Вт/(м∙град).

Принимаем следующее значение коэффициента теплопроводности Вт/(м∙град).

Тогда:

 кВт/м2.

Затем вычисляется расход воды, обеспечивающий принятую температуру ее на выходе из кристаллизатора:

 

,

 

где  – расход воды на кристаллизатор по рассматриваемому условию, м3/ч;

- площадь поверхности кристаллизатора, воспринимающая тепловой

поток, м2;

 – плотность воды, кг/м3;

СВ – удельная теплоемкость воды, кДж/(кг∙град).

Найдем площадь поверхности кристаллизатора:

 

= =2,68 м2.

 

Получим:

м3/ч.

Расход воды, обеспечивающий выполнение второго условия – заданную скорость ее движения в каналах кристаллизатора, определяется по формуле:

 

,

 

где  – расход воды на кристаллизатор, м3/ч;

 – диаметр канала, м;

 – скорость движения воды, м/с;

 – количество каналов.

Вычислим количество каналов, по которым течет вода для охлаждения кристаллизатора. Для этого найдем периметр верха кристаллизатора:

Р = 2∙(260+1326) = 3172 мм.     

Расстояние от центра одного канала до центра следующего:

45 + 20 = 65 мм.

Количество каналов:

m = 3172/65 = 49 шт.

Тогда:

 м3/ч.

После вычисления требуемого расхода воды, исходя из первого и второго условия, принимаем больший из них, т.е. 138,5 м3/ч.

Заключение

В курсовой работе были определены наиболее важные технологические параметры, характеризующие процесс непрерывной разливки стали:

1) диапазон скоростей вытягивания заготовки:

;

2) расход воды на охлаждение кристаллизатора составил 138,5 м3/ч;

3) удельный расход воды на вторичное охлаждение заготовки составил 0,22 м3/т;

4) средняя продолжительность разливки плавки составила 49,3 мин;

5) годовая производительность МНЛЗ равна 3,14 млн. тонн.

 

 



Аннотация

 

В работе представлен расчет технологических параметров непрерывной разливки стали на четырехручьевой МНЛЗ криволинейного типа. Определены параметры жидкого металла для непрерывной разливки, выбраны диаметры каналов стаканов в сталеразливочном и промежуточном ковшах. Приведен расчет основных параметров систем охлаждения кристаллизатора и зоны вторичного охлаждения. Определена длительность разливки плавки и годовая производительность МНЛЗ при рабочей скорости вытягивания заготовки.

 

 



Содержание

 

Введение

1 Параметры жидкого металла

2 Продолжительность затвердевания непрерывнолитой заготовки

3 Скорость вытягивания заготовки

4 Скорость разливки и диаметр сталеразливочных стаканов

5 Параметры настройки кристаллизатора и системы вторичного охлаждения

6 Охлаждение кристаллизатора

7 Вторичное охлаждение заготовки

8 Длительность разливки плавки и производительность МНЛЗ

Заключение

Список использованных источников

 

 



Введение

Непрерывная разливка является в настоящее время основным способом разливки стали, при котором получают слябовые и сортовые заготовки. Качество непрерывнолитых заготовок во многом зависит от правильности выбора технологических параметров процесса разливки, который должен быть сделан с учетом типа машины непрерывного литья заготовок (МНЛЗ), размеров поперечного сечения заготовки, марки стали. Экспериментальное определение рациональных параметров разливки с учетом вышеперечисленных факторов – это сложный, дорогой, трудоемкий и длительный процесс. Современное состояние теории непрерывной разливки стали позволяет определить основные технологические параметры расчетным путем. Расчет технологических параметров непрерывной разливки стали всегда делается для конкретной МНЛЗ. Поэтому для расчета необходимо иметь данные о металлургической длине машины, высоте кристаллизатора, количестве и длине участков зоны вторичного охлаждения, способе вторичного охлаждения на каждом участке. В задании на выполнение расчета могут быть указаны как конструктивные параметры машины, так и источник информации для их выбора.

В данной курсовой работе определены:

– параметры жидкого металла (допустимое содержание вредных примесей и температура металла при разливке);

– продолжительность затвердевания заготовки;

– рабочая скорость вытягивания заготовки и диапазон допустимых скоростей вытягивания;

– скорость разливки металла и диаметр каналов стаканов в сталеразливочном и промежуточном ковшах;

– параметры настройки кристаллизатора и зоны вторичного охлаждения;

– режим охлаждения кристаллизатора;

– режим вторичного охлаждения заготовки;

– длительность разливки плавки и производительность МНЛЗ.



Параметры жидкого металла

Действующие стандарты, определяющие требования к химическому составу металла, допускают довольно высокое содержание вредных примесей – серы и фосфора. Непрерывная разливка металла с повышенным содержанием вредных примесей сопряжена с рядом трудностей. Так, например, повышенное серы требует снижения скорости разливки. В противном случае непрерывно-литые заготовки оказываются пораженными различными дефектами (чаще всего поверхностными или внутренними трещинами). Кроме того, при разливке такого металла возможно возникновение аварийных ситуаций, связанных с прорывами затвердевшей корки [2].

Разливаемая сталь марки 15 имеет следующий химический состав (по ГОСТ 1050–88), представленный в таблице 1.1 [3].

 

Таблица 1.1 – Химический состав разливаемой стали марки 15

С

Si

Mn

S

P

не более

0,12…0,19%

0,17…0,37%

0,35…0,65%

0,04%

0,035%

 

Обычно верхний предел содержания серы и фосфора в стали, разливаемой на МНЛЗ, устанавливается в интервале от 0,015 до 0,025%. Выбор конкретного значения предельного содержания вредных примесей определяется возможностями технологии выплавки и ковшевой обработки металла в сталеплавильном цехе. С учетом приведенной выше информации необходимо принять предельные значения допустимых содержаний серы и фосфора в металле. Принимаем верхний предел содержания фосфора 0,025%, верхний предел содержания серы 0,025%.

Температура разливаемого металла оказывает существенное влияние как на технологию непрерывной разливки, так и на качество получаемой заготовки. Наилучшие результаты получаются в том случае, когда металл в промежуточном ковше имеет перегрев над температурой ликвидус 20–300С:

 

 

где tпр – температура металла в промежуточном ковше, 0С;

tликв – температура ликвидус, 0С.

Температуру ликвидус для углеродистой стали рекомендуется определять по формуле:

 

 

где  – среднее содержание углерода в стали, %.

Принимаем среднее содержание углерода в стали марки 15 равным 0,15%.

Тогда:

;

 

Продолжительность затвердевания непрерывнолитой заготовки

 

Главными факторами, определяющими продолжительность затвердевания непрерывнолитых заготовок, являются размеры ее поперечного сечения: толщина А и ширина В. С достаточной точностью продолжительность затвердевания заготовки можно определить по формуле:

 


где  – продолжительность затвердевания, мин;

Кф – коэффициент формы поперечного сечения заготовки;

А – толщина заготовки, мм;

К – коэффициент затвердевания, мм/мин0,5.

Значение коэффициента формы Кф примем равным 1 (т. к. В/А ≥ 2).

Величину коэффициента затвердевания К рекомендуется принимать в пределах 24–26 мм/мин0,5 для всех марок стали, принимаем равным 26 мм/мин0,5. Толщина получаемой заготовки составляет 250 мм.

Тогда:

 


Дата: 2019-05-28, просмотров: 172.