Распределение ПК по комнатам и отделам
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Введение

 

В настоящее время, каждое предприятие стремится автоматизировать свое производство, создавая локальные вычислительные сети. С каждым годом количество ЛВС по всему миру возрастает, следовательно возрастает и потребность в высококлассных специалистах данного профиля.

Современные сетевые технологии способствовали новой технической революции. Создание ЛВС на предприятии, в учебном заведении, фирме способствует гораздо высокому процессу обмена данными, сведениями между различными объектами, ускорению документооборота, увеличению и ускорению передачи и обмену оперативной информацией.

При создании локально вычислительной сети принимают во внимание несколько фактов, вот основные из них:

- производительность сети

- надежность сети

- степень информационной безопасности

- требуемые аппаратные ресурсы

- функциональная мощность

- возможность объединения с другими ЛВС

- стоимость

В процессе проектирования сети, необходимо также учитывать ряд требований прикладного характер, такие как: физическое расположение пользователей, количество оконченных систем, требования к передаче данных (типы данных, среднюю нагрузку), расстояние между оконечными системами, максимальная протяженность сети, показатель надежности сети в целом и отдельных ее частей. Проектирование ЛВС необходимо производить с учетом развития, принимая во внимание возможность увеличения числа рабочих станций в сети.

Исходные данные для проектирования ЛВС могут быть получены в ходе анализа прикладной области, для которой должна быть создана сеть. Данные затем уточняются в результате принятия решений на этапах проектирования ЛВС. На данном этапе необходимо определить цели создания сети, перечень требований и функций пользователей в сети для заданной предметной области.

 



Задание

 

Разработать сеть для кафедры информационных технологий и систем.

Организационно штатная структура подразделения:

¾ Зав. Кафедрой – 1 рабочая станция

¾ Зам. Зав.Кафедрой – 1 рабочая станция

¾ Зав. Лабораторией – 1 рабочая станция

¾ Лаборант техник – 1 рабочая станция

¾ Преподаватели (10 штатный единиц) – 10 рабочих станций

¾ Класс компьютерный – 21 рабочая станция

¾ Лаборатория сетевых технологий – 12 рабочих станций

¾ Теоретическая аудитория – 3 рабочих станции, предусмотреть возможность подключения проектора

Главной целью информатизации кафедры является:

· Реализация учебного процесса на лабораторных, практических занятиях, выполнение курсового и дипломного проектирования

· Обеспечение оперативного доступа студентов и преподавателей к максимально широкому кругу информационных ресурсов, в том числе использование удаленного доступа

· Разработка методического обеспечения

· Разработка и использование во время занятий электронных учебников, справочников, энциклопедий на CD-ROM

Средняя интенсивность трафика генерируемого одним ПЭВМ = 0,16

Трафик от групп к серверу составляет 60%

Назначение ЛАС: Информационная система для кафедры университета.

 

 

План исходного здания

 

 

 

Сетевая технология FDDI

 

Технология Fiber Distributed Data Interface - первая технология локальных сетей, которая использовала в качестве среды передачи данных оптоволоконный кабель.

Попытки применения света в качестве среды, несущей информацию, предпринимались давно - еще в 1880 году Александр Белл запатентовал устройство, которое передавало речь на расстояние до 200 метров с помощью зеркала, вибрировавшего синхронно со звуковыми волнами и модулировавшего отраженный свет.

Работы по использованию света для передачи информации активизировались в 1960-е годы в связи с изобретением лазера, который мог обеспечить модуляцию света на очень высоких частотах, то есть создать широкополосный канал для передачи большого количества информации с высокой скоростью. Примерно в то же время появились оптические волокна, которые могли передавать свет в кабельных системах, подобно тому как медные провода передают электрические сигналы в традиционных кабелях. Однако потери света в этих волокнах были слишком велики, чтобы они могли быть использованы как альтернатива медным жилам. Недорогие оптические волокна, обеспечивающие низкие потери мощности светового сигнала и широкую полосу пропускания (до нескольких ГГц) появились только в 1970-е годы. В начале 1980-х годов началось промышленная установка и эксплуатация оптоволоконных каналов связи для территориальных телекоммуникационных систем.

В 1980-е годы начались также работы по созданию стандартных технологий и устройств для использования оптоволокнных каналов в локальных сетях. Работы по обобщению опыта и разработке первого оптоволоконного стандарта для локальных сетей были сосредоточены в Американском Национальном Институте по Стандартизации - ANSI, в рамках созданного для этой цели комитета X3T9.5.

Начальные версии различных составляющих частей стандарта FDDI были разработаны комитетом Х3Т9.5 в 1986 - 1988 годах, и тогда же появилось первое оборудование - сетевые адаптеры, концентраторы, мосты и маршрутизаторы, поддерживающие этот стандарт.

В настоящее время большинство сетевых технологий поддерживают оптоволоконные кабели в качестве одного из вариантов физического уровня, но FDDI остается наиболее отработанной высокоскоростной технологией, стандарты на которую прошли проверку временем и устоялись, так что оборудование различных производителей показывает хорошую степень совместимости.

Стандарт FDDI определяет 100 Mb/сек. LAN с двойным кольцом и передачей маркера, которая использует в качестве среды передачи волоконно-оптический кабель. Он определяет физический уровень и часть канального уровня, которая отвечает за доступ к носителю; поэтому его взаимоотношения с эталонной моделью OSI примерно аналогичны тем, которые характеризуют IEEE 802.3 и IЕЕЕ 802.5.

Хотя она работает на более высоких скоростях, FDDI во многом похожа на Token Ring. Oбe сети имеют одинаковые характеристики, включая топологию (кольцевая сеть), технику доступа к носителю (передача маркера), характеристики надежности.

Одной из наиболее важных характеристик FDDI является то, что она использует световод в качестве передающей среды. Световод обеспечивает ряд преимуществ по сравнению с традиционной медной проводкой, включая защиту данных (оптоволокно не излучает электрические сигналы, которые можно перехватывать), надежность (оптоволокно устойчиво к электрическим помехам) и скорость (потенциальная пропускная способность световода намного выше, чем у медного кабеля).

FDDI устанавливает два типа используемoгo оптического волокна: одномодовое (иногда называемое мономодовым) и многомодовое. Моды можно представить в виде пучков лучей света, входящего в оптическое волокно под определенным углом. Одномодовое волокно позволяет распространяться через оптическое волокно только одному моду света, в то время как многомодовое волокно позволяет распространяться по оптическому волокну множеству мод света. Т.к. множество мод света, распространяющихся по оптическому кабелю, могут проходить различные расстояния (в зависимости от угла входа), и, следовательно, достигать пункт назначения в разное время (явление, называемое модальной дисперсией), одномодовый световод способен обеспечивать большую полосу пропускания и прогoн кабеля на большие расстояния, чем многомодовые световоды. Благодаря этим характеристикам одномодовые световоды часто используются в качестве основы университетских сетей, в то время как многомодовый световод часто используется для соединения рабочих групп. В многомодовом световоде в качестве генераторов света используются диоды, излучающие свет (LED), в то время как в одномодовом световоде обычно применяются лазеры.

Физические соединения

FDDI устанавливает применение двойных кольцевых сетей. Трафик по этим кольцам движется в противоположных направлениях. В физическом выражении кольцо состоит из двух или более двухточечных соединений между смежными станциями. Одно из двух колец FDDI называется первичным кольцом, другое - вторичным кольцом. Первичное кольцо используется для передачи данных, в то время как вторичное кольцо обычно является дублирующим.

"Станции Класса В" или "станции, подключаемые к одному кольцу" (SAS) подсоединены к одной кольцевой сети; "станции класса А" или "станции, подключаемые к двум кольцам" (DAS) подсоединены к обеим кольцевым сетям. SAS подключены к первичному кольцу через "концентратор", который обеспечивает связи для множества SAS. Концентратор отвечает за то, чтобы отказ или отключение питания в любой из SAS не прерывали кольцо. Это особенно необходимо, когда к кольцу подключен РС или аналогичные устройства, у которых питание часто включается и выключается.

На рисунке "Узлы FDDI: DAS, SAS и концентратор" представлена типичная конфигурация FDDI, включающая как DAS, так и SAS.

 

Сетевая технология Ethernet

 

Сетевая технология Ethernet была разработана Робертом Меткалфом в 1976 году, была построена сеть пропускной способностью 2,94 Мбит/с.

Технология Ethernet предполагает, что все узлы сети объединяются в единую среду передачи данных. В качестве физической среды передачи может использоваться проводная связь (медные или оптические кабели) или беспроводная (радиоволны). Чаще всего можно столкнуться с сетями Ethernet на медном кабеле – витой паре.

Для того, чтобы из отдельных компьютеров и кабелей образовать общую сеть используются специальные устройства – концентраторы, коммутаторы, маршрутизаторы, мосты и т.д.

 

 

Объединяя концентраторы друг с другом можно строить сеть практически любой протяженности. При этом топология связей в сети будет древовидная на основе звезды.

 

 

а основе стандарта Ethernet был разработан стандарт IEEE 802.3, который во многом совпадает со своим предшественником, но некоторые различия все же имеются. В то время как в стандарте IEEE 802.3 различаются уровни MAC и LLC, в оригинальном Ethernet оба эти уровня объединены в единый канальный уровень. В Ethernet определяется протокол тестирования конфигурации (Ethernet Configuration Test Protocol), который отсутствует в IEEE 802.3. Несколько отличается и формат кадра, хотя минимальные и максимальные размеры кадров в этих стандартах совпадают.

В зависимости от типа физической среды стандарт IEEE 802.3 имеет различные модификации - 10Base-5, 10Base-2, 10Base-T, 10Base-F, 100 Base T, 100 Base TX, 100 Base TU, 100 Base FX.

Класс 10 Base 5

Сети этого стандарта используют топологию "обща шина" и создаются на основании коаксиального кабеля с волновым сопротивлением 50 Ом и пропускной способностью 10 Мбит/с. Общая шина локальной сети ограничивается с обеих сторон терминалами, однако помимо Т-коннекторов в подобных системах использовались специальные устройства, получившие общее название "трансиверы". Собственно, трансиверы являлись приемниками и передатчиками данных между работающими в сети компьютерами и самой сетью. Помимо функций собственно приемника-передатчика информации, трансиверы обеспечивали надежную электроизоляцию работающих в сети компьютеров, а также выполняли функции устройства, снижающего уровень посторонних электрических помех.

Максимальная длина коаксиального кабеля, протянутого между трансивером и сетевым адаптером компьютера в таких сетях может достигать 25 метров, максимальная длина одного сегмента сети – 500 метров, а минимальное расстояние между точками подключения – 2,5м. Всего в одном сегменте сети может работать не более ста компьютеров, при этом количество совместно работающих сегментов сети не должно превышать пяти.

Класс 10 Base 2

Локальные сети, относящиеся к этому классу, являются прямыми "наследниками" сетей 10Base5. Как и в предыдущем случае, для соединения компьютеров используется тонкий экранированный коаксиальный кабель с волновым сопротивлением 50 Ом, оснащенный Т-коннекторами и терминаторами, однако в такой конфигурации Т-коннекторы подключаются к разъему сетевой карты напрямую, без использования каких-либо промежуточных устройств. Соответственно, такая сеть имеет стандартную конфигурацию "общая шина". Максимальная длина одного сегмента может достигать 185 метров, при этом минимальное расстояние между точками подключения составляет 0,5 м. наибольшее число компьютеров, подключенных к одному сегменту такой сети, не должно превышать 30, максимально допустимое количество сегментов сети составляет 5. Пропускная способность данной сети составляет 10 Мбит/с.

Класс 10 Base T

Одним из наиболее распространенных сегодня классов локальных сетей Ethernet являются сети 10BaseT. Как и стандарт 10Base2, такие сети обеспечивают передачу данных со скоростью 10 Мбит/с, однако используют в своей архитектуре топологию "звезда" и строятся с применением специального кабеля – витая пара. Фактически витая пара представляет собой восьмижильный провод, в котором для обмена информации по сети используется лишь две пары проводников: одна – для приема сигнала, и одна для передачи. В качестве центрального звена в звездообразной структуре локальной сети 10BaseT применяется специальное устройство – концентратор. Для построения распределенной вычислительной системы, состоящей из нескольких сетевых сегментов, возможно подключение нескольких хабов в виде каскада, либо присоединение через хаб к сети 10BaseT локальной сети другого класса, однако следует учитывать то обстоятельство, что общее число точек подключения в такой системе не должно превышать 1024.

Максимально допустимое расстояние между узлами сети составляет 100 метров, но можно сказать, что это значение взято, скорее, из практики построения таких сетей, поскольку стандарт 10BaseT предусматривает иное ограничение: затухание мигнала на отрезке между приемником и источником не должно превышать порога 11,5 децибела.

Класс 10 Base F

К этому классу принято относить распределенные вычислительные сети, сегменты которых соединены посредствам магистрального оптоволоконного кабеля, длина которого может достигать 2км. Очевидно, что в силу высокой стоимости такие сети используются в основном в корпоративном секторе рынка.

Сеть имеет звездообразную топологию, которая, однако, несколько отличается от архитектуры, принятой для сети 10BaseT.

Компьютеры каждого сегмента такой сети подключаются к хабу, который в свою очередь, соединяется с внешним трансивером сети 10BaseF посредствам специального коммутационного шнура, подключаемого к 15-контактному разъему AUI. Задача трансивера состоит в том, чтобы, получив из своего сегмнта сети электрический сигнал, трансформировать его в оптический и передать в оптоволоконный кабель. Приемником оптического сигнала является аналогичное устройство, которое преобразует его в последовательность электрических направляемых в удаленный сегмент сети.

Преимущества оптических линий связи перед традиционными неоспоримы. Прежде всего диэлектрическое волокно, используемое в оптоволоконных кабелях в качестве волноводов, обладает уникальными физическими свойствами, благодаря которым затухание сигнала в такой линии крайне мало: оно составляет величину порядка 0,2 дБ на километр при длине волны 1,55 мкм, что потенциально позволяет передавать информацию на расстояние до 100 км без использования дополнительных усилителей и ретрансляторов. Кроме того, в оптических линиях связи частота несущего сигнала достигает 1014Гц, а это означает, что скорость передачи данных по такой магистрали может составлять 1012 бит/с. Если принять во внимание тот факт, что несколько световых волн может одновременно распространяться в световоде в различных направлениях, то эту скорость можно значительно увеличить, организовав между конечными точками оптоволоконного кабеля двунаправленный обмен данными. Другой способ удвоить пропускную способность оптической линии связи заключается в одновременной передачи по оптоволокну нескольких волн с различной поляризацией. Фактически можно сказать, что на сегодняшний день максимально возможная скорость передач информации по оптическим линиям пока еще не достигнута, поскольку достаточно жесткие ограничения на "быстродействие" подобных сетей накладывает конечное оборудование. Оно же "ответственно" и за относительно высокую стоимость всей системы в целом, поскольку диэлектрический кварцевый светодиод сам по себе значительно дешевле традиционного медного провода. В завершение можно упомянуть и тот факт, что оптическая линия в силу естественных физических законов абсолютно не подвержена воздействию электромагнитных помех, а так же обладает существенно большим ресурсом долговечности, чем линия, изготовленная из стандартного металлического проводника.

Таблица соединений

Коммутационная панель Кабель Розетка Активное оборудование
Х111      
1 C101_1 W101_1 SW111_1
2 C101_2 W101_2  
3 C101_3 W101_3 SW111_2
4 C101_4 W101_4 SW111_3
5 C101_5 W101_5  
6 C101_6 W101_6 SW111_4
7 C101_7 W101_7 SW111_5
8 C101_8 W101_8  
9 C101_9 W101_9 SW111_6
10 C101_10 W101_10 SW111_7
11 C101_11 W101_11 SW111_8
12 C101_12 W101_12 SW111_9
13 C101_13 W101_13 SW111_10
14 C101_14 W101_14 SW111_11
15 C101_15 W101_15  
16 C101_16 W101_16 SW111_12
17 C101_17 W101_17 SW111_13
18 C101_18 W101_18 SW111_14
19 C101_19 W101_19 SW111_15
20 C101_20 W101_20 SW111_16
21 C101_21 W101_21  
22 C101_22 W101_22 SW111_17
23 C101_23 W101_23 SW111_18
24 C101_24 W101_24 SW111_19
25 C101_25 W101_25 SW111_20
26 C101_26 W101_26 SW111_21
27 C102_1 W102_1 SW111_22
28 C102_2 W102_2 SW111_23
29 C102_3 W102_3  
30 C102_4 W102_4 SW111_24
31 C102_5 W102_5 SW111_25
32 C102_6 W102_6  
33 C102_7 W102_7 SW111_26
34 C102_8 W102_8  
35 C102_9 W102_9 SW111_27
36 C102_10 W102_10 SW111_28
37 C102_11 W102_11  
38 C102_12 W102_12 SW111_29
39 C102_13 W102_13 SW111_30
40 C102_14 W102_14 SW111_31
41 C102_15 W102_15  
42 C102_16 W102_16 SW111_32
43 C102_17 W102_17  
44 C102_18 W102_18 SW111_33
45 C103_1 W103_1  
46 C103_2 W103_2 SW111_34
47 C103_3 W103_3  
48 C103_4 W103_4  
Х112      
1 C104_1 W104_1  
2 C105_1 W105_1  
3 C105_2 W105_2 SW111_35
4 C105_3 W105_3  
5 C105_4 W105_4  
6 C105_5 W105_5  
7 C105_6 W105_6  
8 C106_1 W106_1  
9 C106_2 W106_2 SW111_36
10 C106_3 W106_3  
11 C106_4 W106_4  
12 C107_1 W107_1  
13 C107_2 W107_2  
14 C107_3 W107_3 SW111_37
15 C107_4 W107_4 SW111_38
16 C107_5 W107_5 SW111_39
17 C108_1 W108_1  
18 C108_2 W108_2  
19 C108_3 W108_3 SW111_40
20 C109_1 W109_1 SW111_41
21 C109_2 W109_2  
22 C109_3 W109_3 SW111_42
23 C109_4 W109_4 SW111_43
24 C109_5 W109_5 SW111_44
25 C109_6 W109_6 SW111_45
26 C109_7 W109_7  
27 C109_8 W109_8 SW111_46
28 C109_9 W109_9 SW111_47
29 C109_10 W109_10 SW111_48
30 C109_11 W109_11 SW112_1
31 C109_12 W109_12 SW112_2
32 C109_13 W109_13  

 



Программное обеспечение ЛВС

 

Наименование Тип поставки Цена Кол-во Стоимость
1 Novell Netware 6.5 Продукт + лицензия 13000 руб. 1 13000 руб.
2 Dr.Web для файлового сервера Novell Netware Продукт + лицензия 12500 руб. 1 12500 руб.
3 Microsoft Exchange Server 2007 Russian Open License Pack Nolevel Продукт + лицензия 19034 руб. 1 19034 руб.
4 KAV 6.02 Продукт + лицензия 1400 руб. 1 1400 руб.
5 UserGate 4.0 Продукт + лицензия 2000 руб. 1 2000 руб.

Итог:

47934 руб.

 

Схема адресации ПК в сети.

Комната Адреса Назначение

101

192.168.0.1/24 101class_1
192.168.0.2/24 101class_2
192.168.0.3/24 101class_3
192.168.0.4/24 101class_4
192.168.0.5/24 101class_5
192.168.0.6/24 101class_6
192.168.0.7/24 101class_7
192.168.0.8/24 101class_8
192.168.0.9/24 101class_9
192.168.0.10/24 101class_10
192.168.0.11/24 101class_11
192.168.0.12/24 101class_12
192.168.0.13/24 101class_13
192.168.0.14/24 101class_14
192.168.0.15/24 101class_15
192.168.0.16/24 101class_16
192.168.0.17/24 101class_17
192.168.0.18/24 101class_18
192.168.0.19/24 101class_19
192.168.0.20/24 101class_20
192.168.0.21/24 101class_21

102

192.168.0.27/24 102Lab_1
192.168.0.28/24 102Lab_2
192.168.0.29/24 102Lab_3
192.168.0.30 /24 102Lab_4
192.168.0.31 /24 102Lab_5
192.168.0.32 /24 102Lab_6
192.168.0.33 /24 102Lab_7
192.168.0.34 /24 102Lab_8
192.168.0.35 /24 102Lab_9
192.168.0.36 /24 102Lab_10
192.168.0.37 /24 102Lab_11
192.168.0.38 /24 102Lab_12
103 192.168.0.45 /24 ZamKaf
105 192.168.0.49 /24 ZavKaf
106 192.168.0.55 /24 ZavLab

107

192.168.0.59 /24 107aud_1
192.168.0.60 /24 107aud_2
192.168.0.61 /24 107aud_3
108 192.168.0.64 /24 Laborant

109

192.168.0.67 /24 Prepod_1
192.168.0.68 /24 Prepod_2
192.168.0.69 /24 Prepod_3
192.168.0.70 /24 Prepod_4
192.168.0.71 /24 Prepod_5
192.168.0.72 /24 Prepod_6
192.168.0.73 /24 Prepod_7
192.168.0.74 /24 Prepod_8
192.168.0.75 /24 Prepod_9
192.168.0.76 /24 Prepod_10

104

192.168.0.80/24 Fail_Server
192.168.0.81 /24 Internet_Server (шлюз по умолчанию)

 



Выбор Internet оператора

Доступ в глобальную сеть Internet будет представлять ОАО "Дальсвязь". Подключение к данному провайдеру обойдется в 1550 рублей, не включая стоимость модема. Тариф выбран безлимитный, абонентская плата в месяц составляет 1500 руб.



Экономическая часть

 

Заключение

 

В ходе выполнения курсовой работы был выбран комплекс технических средств, соответствующий постановленной задачи, с учетом приобретения нового оборудования как пассивного, так и активного и вспомогательного. Так же были выбраны два сервера: файловый сервер, который выполняет и функции сервера приложений, и интернет сервер. Для серверов также было выбрано программное обеспечение. Выполнена трассировка кабеля, произведен расчет кабелепроводов.

Хотелось бы отметить, что для многих информационных систем изначально не преследуется цель сокращения рабочих мест, экономии средств, отводимы на трудовой процесс, а установка вычислительной сети проводится с целью повышения качества принимаемых решений, установки единого регламента деловых процессов, повышения качества обслуживания клиентов, обеспечить коллективную работу как служащих, так и обучающихся.

 


Список литературы

 

1. В.Г. Олифер, Н.А. Олифер "Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов" 2-е издание – СПБ.: Питер, 2003

2. www.offt.ru

3. www.microsoft.com

4. www.publish.khv.ru

5. www.planetashop.ru

6. www.dcom.com

7. www.colan.ru


Введение

 

В настоящее время, каждое предприятие стремится автоматизировать свое производство, создавая локальные вычислительные сети. С каждым годом количество ЛВС по всему миру возрастает, следовательно возрастает и потребность в высококлассных специалистах данного профиля.

Современные сетевые технологии способствовали новой технической революции. Создание ЛВС на предприятии, в учебном заведении, фирме способствует гораздо высокому процессу обмена данными, сведениями между различными объектами, ускорению документооборота, увеличению и ускорению передачи и обмену оперативной информацией.

При создании локально вычислительной сети принимают во внимание несколько фактов, вот основные из них:

- производительность сети

- надежность сети

- степень информационной безопасности

- требуемые аппаратные ресурсы

- функциональная мощность

- возможность объединения с другими ЛВС

- стоимость

В процессе проектирования сети, необходимо также учитывать ряд требований прикладного характер, такие как: физическое расположение пользователей, количество оконченных систем, требования к передаче данных (типы данных, среднюю нагрузку), расстояние между оконечными системами, максимальная протяженность сети, показатель надежности сети в целом и отдельных ее частей. Проектирование ЛВС необходимо производить с учетом развития, принимая во внимание возможность увеличения числа рабочих станций в сети.

Исходные данные для проектирования ЛВС могут быть получены в ходе анализа прикладной области, для которой должна быть создана сеть. Данные затем уточняются в результате принятия решений на этапах проектирования ЛВС. На данном этапе необходимо определить цели создания сети, перечень требований и функций пользователей в сети для заданной предметной области.

 



Задание

 

Разработать сеть для кафедры информационных технологий и систем.

Организационно штатная структура подразделения:

¾ Зав. Кафедрой – 1 рабочая станция

¾ Зам. Зав.Кафедрой – 1 рабочая станция

¾ Зав. Лабораторией – 1 рабочая станция

¾ Лаборант техник – 1 рабочая станция

¾ Преподаватели (10 штатный единиц) – 10 рабочих станций

¾ Класс компьютерный – 21 рабочая станция

¾ Лаборатория сетевых технологий – 12 рабочих станций

¾ Теоретическая аудитория – 3 рабочих станции, предусмотреть возможность подключения проектора

Главной целью информатизации кафедры является:

· Реализация учебного процесса на лабораторных, практических занятиях, выполнение курсового и дипломного проектирования

· Обеспечение оперативного доступа студентов и преподавателей к максимально широкому кругу информационных ресурсов, в том числе использование удаленного доступа

· Разработка методического обеспечения

· Разработка и использование во время занятий электронных учебников, справочников, энциклопедий на CD-ROM

Средняя интенсивность трафика генерируемого одним ПЭВМ = 0,16

Трафик от групп к серверу составляет 60%

Назначение ЛАС: Информационная система для кафедры университета.

 

 

План исходного здания

 

 

 

Распределение ПК по комнатам и отделам

 

Номер комнаты Площадь помещения Наименование отдела Наименование пользователей в сети Количество ПК (пользователей) Кол-во возможных ПК
101 120,76 Компьютерный класс 101class 21 26
102 82,137 Лаборатория сетевых технологий 102Lab 12 18
103 27,86 Зам. Кафедры ZamKaf 1 4
104 16,13 Коммутационный узел -/- -/- 1
105 27,58 Зав. Кафедрой ZavKaf 1 6
106 21,38 Зав. Лабораторией ZavLab 1 4
107 88,91 Теоритическая аудитория 107aud 3+проектор 5
108 14,85 Лаборант техник Laborant 1 3
109 59,45 Преподаватели Prepod 10 13

Итог:

50 80

 

Трафик одного ПК в сети составляет:

 

Ci=K*Cмакс=0,16*100=16 Мбит/с

 

Определим суммарный трафик неструктурированной сети:

 

Cсум = N*M*Ci=1*50*16=800 Мбит/с

 

Определим коэффициент нагрузки неструктурированной сети:

 

Pн=Cсум/Cмакс=800/100=8

 

Проверим, выполняется ли условие допустимой нагрузки ЛВС (домена колизий): Pн≤Pethernet=0.35, 8>0,35 => необходимо сделать логическую структуризацию сети. Pдк=1*16/100=0,16<0.35, в одном сегменте расположен один ПК.

Во многих случаях потоки информации распределены таким образом, что сервер должен обслуживать многочисленных клиентов, поэтому он является "узким местом" сети. Для расчета ЛВС по этому критерию в задании задается, что трафики от групп к серверу и между группами составляют Кs % от суммарного трафика неструктурированной сети.

На основании чего определяем межгрупповой трафик и трафик к серверу:

 

См.гр.серв.=Ksсум=0,6*800=480 Мбит/с

 

Определим коэффициент нагрузки по межгрупповому трафику и трафику к серверу:

 

Рмгрсервsсуммакс≤0,35

Смакс=1000 Мбит/с

Рмгр=480/1000=0,48>0,35

 

Трафик к серверу составляет 1 Gigabit/s.



Дата: 2019-05-28, просмотров: 186.