Кореневе живлення в житті рослин
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Значення кореневого живлення для життя рослин

Кореневе живлення рослин важливий фізіологічний процес в житті рослин. Важливість цього процесу визначається двома обставинами. З одного боку, цей процес в фізіології рослин є теоретичною основою раціонального використання мінеральних речовин - ефективного засобу керування продуктивністю сільськогосподарських рослин; з іншого боку - кореневе живлення розкриває багатобічний взаємозв'язок між рослиною і середовищем за допомогою харчування мінеральними елементами. Від подальших успіхів наукових досліджень кореневого харчування рослин залежить рішення деяких назрілих питань продовольчої проблеми.

Сутність кореневого живлення складається в поглинанні і включенні в метаболізм мінеральних елементів у результаті обміну речовин між рослиною і навколишнім середовищем.

Виникший інтерес до кореневого живлення рослин пов'язаний з його теоретичними успіхами біохімічного, онтогенетичного й екологічного напрямків. Біохімічний напрямок розглядає функціональне значення макро- і мікроелементів для рослинного організму, виявляє шляхи біосинтезу органічних сполук з елементів мінерального живлення, визначає роль мінеральних речовин як регуляторів стану колоїдів клітки. Онтогенетичний напрямок досліджує можливі шляхи керування ростом і розвитком рослин за допомогою елементів мінерального харчування. Екологічний напрямок виявляє залежність внутрішніх процесів рослинного організму від наявності хімічних елементів у зовнішнім середовищі. Найбільш актуальними питаннями в науці про кореневе живлення є наступні:

розробка біохімічної теорії харчування рослин для більш ефективного використання довгостроково діючих мінеральних добрив і використання елементів мінерального харчування як фактора стійкості рослин;

вивчення можливості регулювання співвідношення між вегетативними й органами, що запасають, за допомогою мінерального харчування;

з'ясування поглинаючих і метаболичних функцій кореневих систем під впливом фізіологічно активних речовин;

вивчення ролі елементів мінерального харчування у формуванні енергетичних і окисних систем рослин;

розкриття механізму біологічної фіксації азоту атмосфери і використання його вищими рослинами;

вивчення питань проникнення іонів через клітинні мембрани і їх компартментация в клітках, транспорту іонів у тканини й органи;

з'ясування ролі мінерального харчування при культурі тканин, зв'язаного з розробкою сучасних біотехнологій в одержанні високопродуктивних форм рослин з меристем;

вивчення питань кореневого харчування при керуванні вегетативним ростом і генеративним розвитком рослин.

З'ясування цих питань наблизить нас до керування продуктивністю рослин на більш високій теоретичній основі мінерального живлення; розгляд іонного транспорту як системи процесів, що складають основу матеріального й енергетичного обмінів у рослині; обґрунтування процесів засвоєння рослиною мінеральних речовин як активних фізіологічних явищ.

 

Функції кореневої системи

 

Питання про функції кореневої системи представляє вузол проблем, зв'язаних з живленням рослин, і тому необхідно познайомитися з основами виділення і синтезу речовин у коренях, транспорту іонів у клітку, тканини й органи.

Роль кореня в житті всієї рослини багатогранна. У першу чергу, корінь - це спеціалізований орган поглинання води і мінеральних елементів із ґрунту. Друга сторона діяльності кореневої системи - часткова чи повна переробка поглинених іонів, їхнє відновлення, включення в різні органічні сполуки і транспортування в наземні органи для синтезу складних метаболітів і фізіологічно активних речовин. Ця сторона синтезуючої функції коренів зв'язана з процесом поглинання. Третя функція - виділення в навколишнє середовище речовин, різних по хімічній природі і біологічному значенні. Фізіологічні функції кореня знаходяться в тісному зв'язку з його анатомічною будовою.

У роботах Д Н. Прянишникова вивчення питання про порівняльну цінність різних неорганічних сполук азоту, як джерел азотного живлення, послужило частиною чудових досліджень по перетворенню сполук азоту в кореневій системі. Спочатку перед дослідниками виникло приватне запитання про походження і роль аспарагіну. Відомо, що ця речовина нагромаджується при проростанні насіння у темряві в дуже значних кількостях, що його азот складає біля половини всього азоту проростків. Широким поширенням користалося уявлення про аспарагін, як продукт розпаду білків, що виникає при мобілізації білкових запасів насіння. Експериментально Д Н. Прянишников (1945) довів, що аспарагін не може бути безпосереднім продуктом розпаду білків при проростанні насіння, а виникає в результаті вторинного синтезу. Це було зроблено шляхом проведення досвідів по вивченню здатності рослин засвоювати азот аміачних солей при різних умовах виростання. Проростки гороху, ячменя і люпину жовтого тим краще здатні утворювати аспарагін за рахунок амонійних солей, які даються ними ззовні, чим краще вони забезпечені вуглеводами. У темряві проростки в процесі подиху розтрачують свої вуглеводні запаси і перетворюються в організми, позбавлений можливості використовувати аміак для синтезу аспарагіну.1

Д Н. Прянишников ясно уявляв, що рослини мають у своєму розпорядженні можливість знешкодження аміаку шляхом його проміжного зв'язування з органічними молекулами, що виникають у метаболізмі. У результаті вивчення дикарбонових амінокислот і амідів у рослин у період інтенсивного білкового обміну він знайшов, що ці з'єднання грають важливу проміжну і разом з тим захисну роль у системі перетворень, що супроводжуються звільненням і використанням аміаку. Подальші дослідження розкрили біохімічну картину первинної асиміляції коренями іонів амонію і показали центральну роль у цьому процесі циклу ди- і трикарбонових кислот. Джерела азоту, що поглинається коренями, зазнають амінування й амідування.

Аналіз пасоки дозволив Д А. Сабініну в 1949 р. обґрунтувати концепцію про синтетичну роль коренів. Основні положення цієї концепції наступні:

корінь здатний не тільки поглинати мінеральні елементи, але і перетворювати їх ( чичастково цілком) і подавати в наземні органи в зміненому виді;

синтезуюча діяльність кореня розвертається на підставі асиміляторів, що надходять з фотосинтезованого органа;

корінь впливає на надземні органи не тільки за рахунок забезпечення їхньою водою і мінеральними елементами, але і за рахунок продуктів специфічних реакцій обміну речовин, що відбуваються в коренях.

Практично цілком підтвердилося положення про синтез у коренях фізіологічно активних речовин гормональної природи неауксинового типу. Серед речовин, які потрібні для росту і знаходяться в пасоці, у першу чергу необхідно назвати цитокінини. Вони синтезуються в коренях і пересуваються з пасокою в надземні органи

Центральними реакціями первинного включення аміаку в коренях більшості рослин є, на думку багатьох авторів, амінування (a-кетоглутарової кислоти й амідування глутаминової кислоти. Оскільки в пасоці часто переважає аланін, зроблений висновок про те, що перед виносом NН2-сполук з коренів у погони відбувається часткове переамінування з глутамінової на піровиноградну кислоту. Ця суміш частково використовується в коренях для синтезу власних білків, частково ж виділяється в трахеїди ксилеми і захоплюється з висхідним струмом пасоки в надземні органи, досягаючи крапок росту і листів

У деяких рослин як перші продукти асиміляції NН3 при нормальних умовах утворяться такі багаті NН2-групами сполуки, як цитрулін, алантоінова кислота, аллнтоін і деякі інші. Ці речовини також виділяються в пасоку і відносяться до органічних транспортних форм азоту. Запас їх МН,-груп використовується для переамінування з іншими акцепторами, що приводить до утворення амінокислот.

У корені рослина легка використовує аміни для синтезу алкалоїдів (атропін беладони, нікотин різних видів тютюну).

Ізольовані корені представляють дуже зручний об'єкт для вивчення синтезу ряду речовин, особливо речовин вторинного походження. Так, А. А. Прокоф'єв (1944) показав, що в коренях ізольованої культури тау-сагизу формувалася млечная система, у якій здійснювався синтез каучуку без зв'язку з надземними органами.

Здатність коренів синтезувати ряд з'єднань, у тому числі вітамінів, детально вивчалася в досвідах А. М. Смирнова (1970). Для цих цілей використовувалися корені багатьох рослин кленового походження, що до проведення досвідів тривалий час знаходилися в ізольованій культурі, позбавивши, отже, цілком впливу на них надземних органів. У коренях, що виросли з кінчиків бічних коренів довжиною 25-30 мм за семиденний період, у темряві завжди утворювалася аскорбінова кислота. Порівняльний зміст аскорбінової кислоти в ізольованих коренях приведено нижче (мг % на сиру масу): томати - 6,65; морква - 8,01; люцерна - 22,20; вика - 35,80; горох - 36,74.

Приведені дані показують, що найбільше інтенсивно аскорбінова кислота синтезувалася в коренях бобових, особливо вики і гороху.

Корені цілих рослин (проростків) при вирощуванні їх у темряві зберегли здатність до синтезу аскорбінової кислоти. При цьому корені бобових синтезували її в більшій кількості, чим корені небобових. На підставі цих даних можна допустити, що в коренях проростків аскорбінова кислота накопичується не в результаті відтоку її з листів, а утвориться за рахунок процесів біосинтезу, що протікають безпосередньо в тканинах коренів.

Відомо, що синтез амінокислот локалізований у визначених ділянках кореня. Так, найбільша кількість амінокислот виявлена в частині кореня кукурудзи, що відстоїть на 1-5 див від його кінчика в зоні живих кореневих волосків. Середина і підстава кореня містять мало амінокислот і виконують роль їхнього провідника в надземну частину рослини. Аналіз кореневих розгалужень (корені першого і другого порядків) показав таке ж розташування зони синтезу, тобто вони повторюють будівлю і функції основного кореня.

Закономірності розподілу амінокислот у різних частинах кореня не є загальними для всіх рослин, що підтверджують дані по змісту їх у різних частинах томатів. Головний корінь томатів містить менша кількість всіх амінокислот, чим бічні корені першого і другого порядків. Можливо, це свідчить про різне розташування більш-менш активних частин у корені в різних рослин. Дослідження основних коренів і коренів першого порядку кукурудзи показали, що в більшості ділянок основних коренів міститься менше амінокислот, чим у тих же ділянках коренів першого порядку, що може свідчити про більш активну і продуктивну роботу молодих коренів. Слід зазначити, що найбільша кількість амінокислот, знайдена в односантиметрових кінчиках коренів кукурудзи, виявлялося протягом усієї вегетації.

Перетворення амінокислот у пасоці й у коренях при вегетації показує, що біосинтез амінокислот у коренях грає більш значну роль у початкові фази вегетації. У коренях рослин у міру їхнього розвитку змінюються як спрямованість біосинтезу, так і перетворення амінокислот. З віком змінюється не тільки кількісне, але і якісний зміст амінокислот. .

Установлено дзеркальний характер зміни змісту амінокислот у коренях і пасоці в онтогенезі. Так, у кукурудзі до 36 днів вирощування зміст амінокислот у пасоці зменшувалося з одночасним підвищенням їхньої кількості в коренях. Потім спостерігалися протилежні зміни. При вивченні амінокислотного складу пасоки виноградної лози на початку руху соку виявлені валин, пролін, аланін, глутамінова кислота, серин, гліцин, глутамін, аспарагін, лізин. У період руху соку в пасоці з'являються фенілаланін, лейцин, треонін, аспарагінова й аміномасляна кислоти.

Корені рослин здійснюють асиміляцію азоту переважно в зоні кори. У досвідах С. Ф. Ізмайлова (1986) показано, що основною тихорєцькою зоною, де відбуваються перетворення амінокислот і їхнє нагромадження, є паренхімні клітини кори. При асиміляції азоту в тканинах коренів переважно використовується сахароза невеликого по величині метаболічного фонду. Цей фонд має тісний метаболічний зв'язок з екзогенними цукрами, унаслідок чого при асиміляції азоту досягається швидке використання вуглецю цукрів, що надійшов у клітку.

Кількісний склад амінокислот перетерплює істотні зміни в процесі росту клітки кореня. Велика кількість амінокислот у зонах розтягання і диференціації свідчить про зростання потреби в них для білкового синтезу, здатність до якого збільшується в міру росту клітки.

Зміна амінокислотного складу коренів і подачі з пасокою амінокислот у процесі вегетації рослин є відображенням нормального функціонування коренів, їхній синтезуючий діяльності протягом онтогенезу.

Корені виконують у цілому рослині як би роль “залози", що виробляє за рахунок асиміляторів, що надходять з листів, і азоту ґрунту багато вторинних азотистих сполук, у тому числі речовини регуляторного характеру. Синтезовані в коренях сполуки виносяться потім у надземні органи. Кругообіг речовин у рослині є ланкою кореневого живлення і тому чітко контролюється потребою рослини і тими джерелами живлення, якимип воно володіє. Цей кругообіг тісно пов'язаний з поглинаючою і видільною діяльністю коренів і служить в основному для розподілу вироблених ними NН2 - сполук.

Однієї з функцій кореневої системи є виділення в навколишнє середовище речовин, різних за хімічною природою і біологічному значенню. Експериментально встановлено, що через кореневу систему виділяються майже всі типи водорозчинних органічних сполук. У складі кореневих виділень виявлено багато різноманітних амінокислот і органічних кислот. Неодмінними компонентами кореневих виділень є цукри. Кількість і склад кореневих виділень визначаються видовими і сортовими особливостями рослин. Наприклад, кореневі виділення в бобових рослин набагато багатше амінокислотами, чим у злакових; яблуня через корені виділяє фенольні речовини, а овес - речовини типу лактонів.

Є відомості про те, що корені здатні виділяти мінеральні речовини. Яскравим прикладом можуть служити бобові й олійні культури, корені яких виділяють фосфорну кислоту й інші мінеральні елементи.

Отже, кількість виділюваних у ґрунт речовин може істотно перевершувати рівень їхнього змісту в самому корені. Цей феномен означає, що екскреторні процеси визначаються життєдіяльністю всього організму, а корінь виконує функцію органа виділення. Процес виділення речовин постійно відбувається в звичайних умовах середовища і, мабуть, є нормальною функцією рослинного організму. Зараз визнається існування постійного круговороту живильних речовин по рослині, під яким варто розуміти пересування елементів ґрунтового харчування спочатку з коренів у надземні органи, а потім знову в корені, відкіля частина речовин може мігрувати назад у ґрунт.1

Одним з найбільш переконливих підтверджень інтенсивних виділень є відзначені факти негативного балансу процесів харчування на останніх етапах онтогенезу рослин. Поглинені коренями зольні елементи наприкінці вегетації в значних кількостях повертаються в ґрунт (38 % ДО, 22 % Са, 10%Мо). Виділення фосфорної кислоти коренями люпину, гірчиці, ярового рапсу може скласти близько 14-34%, усієї фосфорної кислоти, що поглинається рослиною.

Швидкості виділення і поглинання К, Nа, Са, Со настільки великі, що рослини за період вегетації здатні поглинути і виділити в десятки разів більше цих елементів, чим містити їх у собі в якийсь даний період вегетації.

Виділення метаболітів коренями властиве зоні кореневих волосків, і кореневі виділення, як правило, мають кисле середовище.

Виникає питання: яка екологічна доцільність викиду асимільованого вуглецю і раніше поглинених елементів мінерального живлення

1. Безсумнівно, ці виділення, з одного боку, можуть бути пристосувальною реакцією на умови зовнішнього середовища, що змінюються. Відзначено, що висихання ґрунту до початку зів'янення рослин і наступний її поливши сприяють посиленому виділенню амінокислот і відновлених з'єднань з рослин. Результати досвіду Н. В. Мєшкова (1971) показали значне збільшення кореневих виділень в умовах зміни живильних розчинів у порівнянні з незмінюваними. Якщо ж зміст вуглецю в органічних речовинах кореневих виділень виразити у відсотках від загального вуглецю в рослинах, тоді цей показник для гороху буде дорівнює 4,04 % у незмінюваних розчинах і 10,96 % - у змінюваних; для кукурудзи відповідно 1,0 і 2,26 %.

З іншого боку, виділення позаклітинних гідролаз у ризосферу, очевидно, свідчить про пристосування рослинних форм у процесі еволюції до використання деяких елементів мінерального складу.

2. Виділені кореневою системою продукти життєдіяльності накопичуються в ризосфері і служать живильним субстратом для ризосферної і ґрунтової мікрофлори, тобто корені забезпечують її азотом і вуглецем у легко доступній формі. Наявність легко доступної органічної речовини сприяє розвитку клубенькових бактерій. У вигляді кореневих виділень безпосередньо на процеси азотфіксації витрачається від 25 до 37 % вуглецю, фотосинтезованого рослиною. .

3. Частина кореневих виділень реутилізується тим же чи суміжно розташованою рослиною ценозу. Прямий обмін метаболітами коренів сусідніх рослин між собою відіграє ведучу роль у взаєминах рослин у фітоценозах.

Як відомо, при багаторічному, беззмінному вирощуванні тієї чи іншої культури відбувається збідніння якісного складу мікрофлори. Рослинні виділення можуть придушувати деяких представників ґрунтової мікрофлори.

Негативний вплив токсичних кореневих виділень деякою мірою пов'язаний з наявністю в ґрунті органічної речовини. Чим нижче вміст органічної речовини в ґрунті, тим швидше настає стомлюваність ґрунту.

Результати визначення активності ферментів ризосфери показали, що ферментативна активність ґрунту знаходиться в тісному зв'язку з діяльністю кореневих систем. Про здатність тонких закінчень коренів виділяти в навколишнє середовище активну протеазу указував В.Д.Купревич (1954). Виявляється також визначена залежність між чисельністю мікроорганізмів у ґрунті й активністю протеаз.

Кореневі виділення здатні змінювати водяний режим у ґрунті і рослині, порушувати інтенсивність транспірації і подиху, засвоєння вуглеводів.

 



Дата: 2019-05-28, просмотров: 207.