О РАСПРЕДЕЛЕНИИ НАНОЧАСТИЦ В ПОЛИМЕРНЫХ МАТРИЦАХ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Нанотехнология - это технология, оперирующая величиной, порядка нанометра, т.е. одной миллиардной доли метра [1], это процесс получения и использования материалов, состоящих из наночастиц (наноматериалы, нанокристаллы, нанокомпозиты) [2]. Одним же из наиболее перспективных направлений нанотехнологии является разработка принципов получения полимерных нанокомпозитов [3]. Их создание базируется на фундаментальных исследованиях физико-химических процессов формирования материалов и эволюции их структуры, обеспечивающей широкий спектр функциональных свойств. В ряде работ убедительно показана эффективность использования в качестве модификаторов полимерной матрицы соединений различной химической природы, имеющих нанометровые размеры [4, 5]

Используя сверхчистый диоксид углерода, ученым удалось внедрить наночастицы в больших концентрациях, что привело к значительному улучшению свойств полимерных материалов, таких как модуль упругости и относительная деформация при сжатии [6].

Хорошо распределенные в полипропилене и поликарбонате частицы глины способствуют ориентированию или выравниванию полимерных цепочек, и, следовательно, замедляют процесс потери их ориентации. В результате, примеси из наночастиц заставляют полимерные цепочки вести себя как более длинные или более высокомолекулярные цепочки. Материал оказывается намного прочнее, чем можно было бы ожидать исходя из длины цепей [7].

Очень часто как наполнитель применяют углеродные нанотрубки (УНТ). Важно отметить, что при их добавлении в полимерную матрицу особое внимание следует обращать на ориентацию УНТ. Как правило, УНТ в композитах ориентированы случайным образом и в значительной степени переплетены, что в значительной мере влияет на свойства КМ.

Для диспергирования нанотрубок обычно используют ультразвуковую обработку в растворителях типа ацетона, однако она недостаточно эффективна - либо нанотрубки остаются спутанными, либо, при длительной обработке, они разламываются на короткие куски, что приводит к образованию дефектов. К тому же трудно сделать армированный композит, используя короткие нанотрубки. Более того, важно получать композиты с однонаправленными нанотрубками [8]. Для текстурирования нанотрубок предлагали различные методы, например, механическое вытягивание [10], ориентирование в магнитном поле [11] использование центрифугирования [12]. Но никто раньше не учитывал, что как на разделение, так и на текстурирование большое влияние должна оказывать вязкость матрицы [9]. Поэтому исследователи из University Sydney (Австралия), рассмотрев воздействие вязкости матрицы на микроструктуру композитов, предложили эффективный механический метод одновременного разделения и текстурирования длинных переплетенных нанотрубок в эпоксидной смоле [13]. Они приготовили композиты из эпоксидной смолы и многостенных нанотрубок (МСНТ), поместили их между двумя стальными дисками и подвергли постоянному сдвиговому усилию со скоростью 0.22с -1 (рис. 3).

 

Рис.1. Схема текстурирования нанотрубок в матрице в результате приложения сдвиговых усилий: а) направление ориентации УНТ; б) ожидаемая ориентация УНТ; в) вращение стального диска

Выяснено, что для эффективного текстурирования и разделения требуется определенная вязкость матрицы, которая может быть достигнута при добавлении нужного количества отвердителя. Как и ожидалось, характеристики композита с однонаправленными нанотрубками оказались лучше. Кроме того, обнаружено, что добавление УНТ снижает скорость образования поперечных связей в эпоксидной смоле [13].


ЛИТЕРАТУРА:

 

1. Гайнулина М.Р., Булавин А.В., Тюрина Т.Г. «Получение сополимеров малеинового ангидрида и стирола и использование их в качестве флокулянта». V Международная научная конференция студентов и аспирантов «Охрана окружающей среды и рациональное использование природных ресурсов». Т.1 – Донецк: ДонНТУ, ДонНУ, 2006.

2. Проскуряков В.А., Шмидт Л.И. Очистка сточных вод в химической промышленности. – Л.: Химия, 1977. – 464 с.

3. Яковлев С.В., Карелин Л.А. и др. Очистка производственных сточных вод: Учебное пособие для вузов / Под ред. С.В. Яковлева, 2-е изд., перераб. и доп.-М.: Стройиздат, 1985. – 335 с.

4. Родионов А.И. и др. Техника защиты окружающей среды: Учебное пособие для вузов. 2-е изд., перераб. и доп.-М.: Химия, 1989. – 512 с.

5. Золотухин И.В., Калинин Ю.Е., Стогней О.В. Новые направления физического материаловедения: Издательство Воронежского государственного университета, 2000.-360с.

6. Планкина С.М. Углеродные нанотрубки. Описание лабораторной работы по курсу "Материалы и методы нанотехнологии". Нижегородский государственный университет им. Н.И. Лобачевского. Кафедра физики полупроводников и оптоэлектроники. Нижний Новгород, 2006.-12с.

7. Харрис, П. Углеродные нанотрубы и родственные структуры. Новые материалы XXI века. /П.Харрис - М.: Техносфера, 2003.-336 с.

8. Охлопкова А.А., Адрианова О.А., Попов С.Н. Модификация полимеров ультрадисперсными соединениями. – Якутск: ЯФ изд-ва Наука, 2003. – 224 с.

9. Булдык Е.П., Ревяко М.М. //Докл. НАН Беларуси.–1999. – 43, № 5.–С. 119

10. Чвалун С.Н. Полимерные нанокомпозиты //Журнал «Природа», № 7, 2000


Дата: 2019-05-28, просмотров: 211.