Условные силлогизмы – такие, в которых либо одна, либо обе посылки – условные суждения. Схема условного силлогизма, в котором обе посылки – условные суждения:
Если А, то В | |
Если В, то С | |
Следовательно, если А, то С. |
Пример:
Если тело подвергается трению, то оно нагревается. |
Если тело нагревается, то оно расширяется. |
Если тело подвергается трению, то оно расширяется. |
Аксиому чисто условного силлогизма часто выражают словами: следствие следствия есть следствие основания.
Условные силлогизмы могут составлять целые цепи.
Условно-категорическими называют такие умозаключения, одна из посылок которых является условным суждением, а другая – суждением категорическим. Вывод в таких умозаключениях представляет собой категорическое суждение. В условно-категорических силлогизмах имеется два правильных модуса: модус ponens (или конструктивный), другой – модус tollens (или деструктивный).
Модус ponens образует заключение от согласия с основанием условной посылки к необходимости соглашаться и с ее следствием. Форма этого модуса такова:
Если А, то В |
А. |
В. |
Модус tollens является умозаключением от отрицания следствия условной посылки к отрицанию ее основания. Форма его такая:
Если А, то В. |
Не В. |
Не А. |
Абстрактно рассуждая, можно сконструировать еще два вида сочетания посылок:
1) | Если А, то В | 2) | Если А, то В |
В | Не А | ||
? | ? |
Но определенного вывода в этих случаях сделать невозможно, если большая посылка представляет собой обычное, не выделяющееся суждение. Например:
1) | Если дождь идет, то на улице мокро; |
На улице мокро… | |
? |
На улице может быть мокро и без дождя, по другим причинам: растаял снег, проехала поливальная машина и т.д. Основная причина невозможности вывода по этой форме кроется в так называемой множественности причин. Чтобы вывод был верен, для следствия должна существовать только одна причина, но это уже будет преобразованная форма с включением в рассуждение знания об этой единственной причине.
На примере с дождем и мокрой мостовой очевидна невозможность достоверного заключения во втором виде сочетания посылок:
2) | Если А, то В |
Не А | |
? |
Разделительные силлогизмы.
Разделительными, или дизъюнктивными, силлогизмами называются такие, первая посылка которых есть разделительное (дизъюнктивное) суждение. Вторая и вывод суть суждения разделительные или категорические.
Схема дизъюнктивного суждения, образующего первую посылку дизъюнктивного силлогизма, имеет такой вид: S есть или А, или В, или С. Каждое из суждений, входящее в данное разделительное суждение (S есть А; S есть В; S есть С), называются альтернативой. В нашем суждении содержится три альтернативы.
Дизъюнктивные силлогизмы имеют два модуса:
а) | S есть А, или В, или С; |
S не есть ни А, ни В | |
Следовательно, S есть С |
В этом модусе во второй посылке отрицается все, кроме одной альтернативы, поэтому в выводе утверждается эта оставшаяся альтернатива. Так как в выводе мы приходим к утверждению, модус называется утверждающим, но путь наш состоял в отрицании всех других альтернатив, кроме одной, то модус получил название модуса, утверждающего посредством отрицания (tollendo ponens).
б) | S есть или А, или В, или С; |
S есть А. | |
Следовательно, S не есть ни В, ни С. |
В этом модусе во второй посылке утверждается одна альтернатива; поэтому в выводе все оставшиеся альтернативы отрицаются. Этот модус по своему итогу оказывается отрицающим, а способ получения этого отрицания у него – утверждение. Поэтому полное наименование этого модуса – модус, отрицающий посредством утверждения (ponendo tollens).
Для правильного построения разделительного силлогизма и истинности вывода, необходимо соблюдение следующих двух правил:
а) в разделительном суждении должны быть приведены все возможные альтернативы. Другими словами, деление субъекта суждения должно быть полным, исчерпывающим;
б) необходимо учитывать точное значение союза «или», которое может быть и чисто разделительным, и соединительно-разделительным, так как при чисто разделительном значении «или» все альтернативы исключают одна другую, а при соединительно-разделительном значении союза «или» альтернативы не исключают одна другую.
Условно-разделительные силлогизмы.
В условно-разделительном (лемматическом) силлогизме одна посылка является условным суждением, а вторая – разделительным. В зависимости от количества альтернатив, содержащихся в разделительном суждении этого силлогизма, он называется дилеммой, трилеммой, тетралеммой. Наиболее употребительной в практике мышления является дилемма. Она бывает простой и сложной, конструктивной (созидательной) и деструктивной (разрушительной).
В конструктивной дилемме совершается мысленный переход от утверждения альтернатив в основаниях условного суждения к утверждению соответствующих следствий. В деструктивной дилемме происходит переход мысли от отрицания следствий к отрицанию оснований.
Различия между простой и сложной конструктивными дилеммами состоит в том, что: 1) в большей посылке простой дилеммы каждое из двух оснований обусловливает одно и то же следствие, а в сложной дилемме разные основания обусловливают разные следствия; 2) в простой дилемме заключение является категорическим суждением, а в сложной – разделительным.
Простая конструктивная дилемма соответствует схеме:
Если А, то С; если В, то С. |
А или В. |
С. |
Пример:
Если число делится на 6, то оно делится на 2; |
Если число делится на 8, то оно делится на 2. |
Но данное число делится или на 6, или на 8. |
Данное число делится на 2. |
Схема сложной конструктивной дилеммы:
Если А, то В; если С, то Д. |
А или С. |
В или Д. |
Пример: Человек, находящийся в горящем доме, может рассуждать так:
Если я пойду из дома по лестнице, то получу ожоги; если я |
выпрыгну из окна, то получу ушибы. |
Но я могу выпрыгнуть из окна или пойти по лестнице. |
Я или получу ожоги, или получу ушибы. |
Простая и сложная деструктивные дилеммы различаются тем, что: а) в большей посылке простой дилеммы два возможных следствия вытекают из одного основания, а в сложной – из двух оснований; б) заключение в простой деструктивной дилемме является категорическим суждением, а в сложной – соединительным.
Схема простой деструктивной дилеммы такова:
Если А, то или В, или С. |
Но не В и не С. |
Не А. |
Пример:
Если растение является деревом, то оно либо лиственное, |
либо хвойное. |
Но данное растение не есть ни лиственное и ни хвойное. |
Данное растение не есть дерево. |
Схема сложной деструктивной дилеммы:
Если А, то В; если С, то Д. |
Но не В и не Д. |
Не А и не С. |
Пример:
Если треугольник прямоугольный, то в нем есть два угла, сумма которых равна одному прямому углу; если же треугольник тупоугольный, то в нем есть два угла, сумма которых меньше прямого угла. |
В данном треугольнике или нет двух углов, сумма которых равна прямому углу, или нет двух углов, сумма которых меньше прямого угла. |
Следовательно, данный треугольник и не прямоугольный, и не тупоугольный. |
Правила построения условно-разделительных силлогизмов таковы:
1. умозаключать в условно-разделительных силлогизмах можно от утверждения основания к утверждению следствия и от отрицания следствия к отрицанию основания, но нельзя умозаключать от утверждения следствия к утверждению основания и от отрицания основания к отрицанию следствия;
2. во второй посылке, которая есть разделительное суждение, должны быть полностью перечислены все альтернативы;
3. необходимо, чтобы союз «или» имел чисто разделительное значение, то есть чтобы альтернативы были чисто исключающими друг друга.
Неправильность лемматического умозаключения часто вызывается тем, что дилемма формулируется там, где необходимо формулировать трилемму или тетралемму, так как дилемма в этом случае не исчерпывает всех альтернатив. Пример подобной ошибки – следующее рассуждение:
Данный лес или лиственный, или хвойный. |
Установлено, что данный лес не лиственный. |
Данный лес хвойный. |
Ошибка состоит в том, что не учтена третья возможность – возможность быть смешанным лесом.
Индуктивные умозаключения
Дедуктивные умозаключения, которые мы рассмотрели, не исчерпывают всей области умозаключений, хотя и составляют наиболее разработанную логикой часть. Если поставить вопрос о том, как формируется то общее, которое, как мы выяснили, составляет исходный пункт дедукции, то мы неизбежно придем к индуктивным умозаключениям.
Индукцию (от лат. inductio – наведение) понимают как метод исследования, целью которого является анализ движения знания от единичного к общему суждению. Но индукция выступает и как определенная логическая форма, то есть такая устойчивая связь мыслимого содержания, в которой отражается и фиксируется восхождение мысли от менее общих положений к более общим положениям. Далее мы будем касаться именно этого аспекта индукции.
Познавательное значение индукции в общем и целом было уже отмечено Аристотелем. Ее связь с опытным наблюдением и возможность непосредственной проверки индуктивных обобщений делают ее простым и доступным методом, по сравнению с дедукцией. Сам же Аристотель отдавал предпочтение более строгому виду умозаключения, а именно силлогистике.
Дата: 2019-05-28, просмотров: 203.