Можно ли считать вирусы живыми ? Являются ли вирусы живыми ?
Согласно Львову, “организм - некая независимая единица интегрированных и взаимосвязанных структур и функций”. У простейших, то есть у одноклеточных именно клетка является независимой единицей, иными словами, организмом. И клеточные организмы - митохондрии, хромосомы и хлоропласты - это не организмы, ибо они не являются независимыми. Получается, что если следовать определению, данным Львовым, вирусы не являются организмами, так как не обладают независимостью: для выращивания и репликации генетического материала нужна живая клетка.
В то же время, у многоклеточных видов независимо от того, животные или растения, отдельные линии клеток не могут эволюционировать независимо друг от друга; следовательно, их клетки не являются организмами. Для того чтобы изменение было эволюционно значимым, оно должно быть передано новому поколению индивидуумов. В соответствии с этим рассуждением организм представляет собой элементарную единицу некоторого непрерывного ряда со своей индивидуальной эволюционной историей
Вирус обретает относительно независимую эволюционную историю благодаря его способности к адаптации в направлении, ведущим к приобретению им способности передаваться от хозяина к хозяину. Он может пережить клетку или организм, в которых паразитирует; фактически вирус часто “эксплуатирует” клетку. Один вирус может встречаться в разных видах, родах и типах и также один и тот же вирус может передаваться от растений насекомым и размножаться в клетках тех и других. Вирус, обладающий соответствующей приспособляемостью, может использовать разнообразные эволюционные ниши. Таким образом, вирус, конечно, обладает большей независимостью, чем любая клеточная органелла. То есть, в эволюционном плане вирус в большей степени организм, чем хромосома или даже клетка многоклеточного животного, хотя функционально он значительно менее независим, чем любая такая клетка.
И в то же время, можно рассматривать данную проблему с точки зрения другого определения: материал является живым если, будучи изолированным, он сохраняет свою специфическую конфигурацию так, что эта конфигурация может быть реинтегрирована, то есть вновь включена в цикл, в котором участвует генетическое вещество: это отождествляет жизнь с наличием независимого специфического самореплицирующегося способа организации. Специфическая последовательность оснований нуклеиновой кислоты того или иного гена может копироваться; ген - это некая часть запасов информации, которой располагает живой организм. В качестве теста на живое данное выше определение предлагает воспроизведение в различных клеточных линиях и в ряде поколей организмов. Вирус, согласно этому тесту, живой точно так же, как и любой другой фрагмент генетического материала, что его можно извлечь из клетки, вновь ввести в живую клетку и что при этом он будет копироваться в ней и станет хотя бы на некоторое время часть ее наследственного аппарата. При этом передача вирусного генома составляет основной смысл существования этих форм - результат их специализации в процессе отбора. Поэтому специализированность вирусов как переносчиков нуклеиновых кислот дает возможность считать вирусы “более живыми”, чем какие либо фрагменты генетического материала, и “более организмами”, чем любые клеточные органеллы, включая хромосомы и гены.
Строгие постулаты Коха
Каковы же те основные положения, сформулированные Робертом Кохом (1843-1910), которых должен придерживаться микробиолог при каждом обнаружении неизвестного возбудителя ? Что может служить доказательством, что именно он является причиной данного инфекционного заболевания ? Вот эти три критерия:
Неоднократное получение чистой культуры возбудителя, взятого из организма больного.
Возникновение точно такого же или сходного заболевания (как по характеру течения, так и по вызываемым им патологическим изменениям) при инфицировании здорового организма культурой предполагаемого возбудителя.
Появление в организме человека или животного после их заражения данным возбудителем всегда одних и тех же специфических защитных веществ. При контакте иммунной сыворотки крови с возбудителем из культуры последний должен терять свои патогенные свойства.
Для современной вирусологии характерно бурное развитие и широкое применение самых различных методик - как биологических (включая генетические), так и физико-химических.. Они используются при установлении новых, до сих пор еще неизвестных вирусов, и при изучении биологических свойств и строения уже обнаруженных видов.
Фундаментальные теоретические исследования дают обычно важные сведения, которые используются в медицине, в области диагностики или при глубоком анализе процессов вирусной инфекции. Введение новых действенных методов вирусологии связано, как правило, с выдающимися открытиями.
Так например, метод выращивания вирусов в развивающемся курином эмбрионе, впервые примененный А. М. Вудрофом и Е. Дж. Гудпэсчуром в 1931 году, был с исключительным успехом использован при изучении вируса гриппа.
Прогресс физико-химических методов, в частности метода центрифугирования, привел в 1935 году к возможности кристалмуации вируса табачной мозаики (ВТМ) из сока больных растений, а в последствии и к установлению входящих в его состав белков. Этим был дан первый толчок к изучению строения и биохимии вирусов.
В 1939 году А. В. Арден и Г. Руска впервые применили для изучения вирусов электронный микроскоп. Введение этого аппарата в практику означало исторический перелом в вирусологических исследованиях, поскольку появилась возможность увидеть - хотя в те годы еще и недостаточно четко - отдельные частицы вируса, вирионы.
В 1941 году Г.Херст установил, что вирус гриппа при известных условиях вызывает агглютинацию (склеивание и выпадение в осадок) красных кровяных телец (эритроцитов). Этим была положена основа для изучения взаимоотношений между поверхностными структурами вируса и эритроцитов, а также для разработки одного из наиболее эффективных методов диагностики.
Коренной перелом и вирусологических исследованиях произошел в 1949 г., когда Дж. Эндерсу, Т. Уэллеру и Ф. Роббинсу удалось размножить вирус полиомиелита в клетках кожи и мышц человеческого зародыша. Они добились разрастания кусочков ткани на искусственной питательной среде. Клеточные (тканевые) культуры были инфицированы вирусом полиомиелита, который до этого изучали исключительно на обезьянах и лишь очень редко на особом виде крыс.
Вирус в человеческих клетках, выращенных вне материнского организма, хорошо размножался и вызывал характерные патологические изменения. Метод культуры клеток (длительное сохранение и выращивание в искусственных питательных средах клеток, выделенных из организма человека и животных) был впоследствии усовершенствован и упрощен многими исследователями и стал, наконец, одним из наиболее важных и результативных для культивирования вирусов. Благодаря этому более доступному и дешевому методу появилась возможность получать вирусы в относительно чистом виде, чего нельзя было достичь в суспензиях из органов погибших животных. Введение нового метода означало несомненный прогресс не только в диагностике вирусных заболеваний, но и в получении прививочных вакцин. Он дал также неплохие результаты и в биологических и биохимических исследованиях вирусов.
В 1956 году удалось показать, что носителем инфекционности вируса является содержащаяся в нем нуклеиновая кислота. А в 1957 году А.Айзекс и Дж. Линдеман открыли интерферон, который позволил объяснить многие биологические явления, наблюдаемые в отношениях между вирусом и клеткой - хозяином или организмом - хозяином.
С. Бреннер и Д. Хорн ввели в технику электронной микроскопии метод негативного контрастного окрашивания, сделавший возможным изучение тонкого строения вирусов, в частности их структурных элементов (субъединиц).
В 1964 году уже упоминавшийся нами ранее американский вирусолог Гайдузек с сотрудниками доказал инфекционный характер ряда хронических заболеваний центральной нервной системы человека и животных. Он изучал недавно обнаруженные своеобразные вирусы, лишь в некоторых чертах схожие с ранее известными.
В то же время американский генетик Барух Бламберг обнаруживает (в процессе генетических исследований белков крови) антиген сывороточного гепатита (австралийский антиген), вещество, идентифицируемое при помощи серологических тестов. Этому антигену суждено было сыграть большую роль в вирусологических исследованиях гепатита.
В последние годы одним из крупнейших успехов вирусологии можно считать раскрытие некоторых молекулярно-биологических механизмов превращения нормальных клеток в опухолевые. Не меньшие успехи были достигнуты и в области изучения строения вирусов и их генетики.
Инфекционная единица
Наименьшее количество вируса, способное в данном опыте вызвать инфекцию, называется инфекционной единицей.
Для ее определения применяются обычно два метода. Первый основан на определении 50 %-ной летальной дозы, которая обозначается LD 50 (от лат. Letatis - смертельная, dosis - доза). Второй метод устанавливает число инфекционных единиц по числу бляшек, образовавшихся в культуре клеток.
Что, в сущности, представляет собой величина LD 50 и как она определяется? Исследуемый вирусный материал разводится в соответствии со снижающимися степенями концентрации, скажем кратными десяти: 1:10; 1:100; 1:1000 и т.д. Каждым из растворов с указанными концентрациями вируса инфицируют группу животных (десять индивидуумов) или культуру клеток в пробирках. Потом наблюдают гибель животных или изменения, происшедшие в культуре под влиянием вируса. Статистическим методом определяется степень концентрации, способная умертвить 50 % животных из числа зараженных исходным материалом. При использовании культуры клеток следует найти такую дозу вируса, которая производит губительное действие на 50 % инфицированных ею культур. В этом случае употребляется сокращение ЦПД 50 (цитопатическая доза). Иначе говоря, речь идет о такой дозе вируса, которая вызывает повреждение или гибель половины инфицированных ею культур.
Методом бляшек нельзя получить статистические данные, но можно установить фактическое число единиц вируса в материале, дающем бляшки в культуре клеток. В идеальном случае такая единица отвечает одной функционально полноценной частице.
Титрование
Индуцируемая вирусом реакция может происходить по типу “все или ничего” (то есть наличие или отсутствие инфекции), а может быть выражена количественно, например продолжительностью времени, необходимого проявления инфекции, или числом поражений в слое чувствительных клеток. Количественное определение вирусной активности называется титрованием. Титр исходной вирусной суспензии выражается числом инфекционных единиц, приходящихся на единицу объема. Инфекционные нуклеиновые кислоты, независимо от того выделены ли они из фагов или из вирусов животных или растений, как правило, обладают значительно меньшим инфекционным титром, чем исходный вирус (то есть отношение числа содержащихся в препарате молекул нуклеиновой кислоты к числу инфекционных единиц значительно больше, чем соответствующие величины для вирионов, из которых эти нуклеиновые кислоты были выделены). Однако и при титровании свободной нуклеиновой кислоты и при титровании вирионов вероятность нахождения в пробе среднего числа частиц выражается одной формулой. Отсюда следует, что вирусную инфекцию может вызвать также и одна молекула вирусной нуклеиновой кислоты. Как правило, инфекционными являются только интактные вирусные ДНК и РНК. Исключение наблюдается при множественном заражении клеток молекулами нуклеиновой кислоты, содержащими неполным геном вируса.
Резюмируя сказанное, можно прийти к выводу, что титр вирусной суспензии, выраженный числом инфекционных единиц, содержащихся в единице объема, как правило, соответствует числу вирионов (или числу молекул вирусной нуклеиновой кислоты), способных при условиях данного опыта вызвать инфекцию.
Утрата инфекционности
Как правило, чувствительность вирионов данного вируса к действию тех или иных инактивирующих веществ определяется специфическими свойствами его белков, вследствие чего методы инактивации инфекционности, разработанные для данного конкретного вируса, эффективны лишь в отношении близкородственных ему вирусов. Исключение составляет чувствительность вирусов к рентгеновским лучам, которая зависит от типа нуклеиновой кислоты вирионов и ее количества. В основе этой закономерности лежит тот факт, что действие рентгеновских лучей приводит к разрыву молекул нуклеиновой кислоты, и даже одного такого разрыва часто бывает достаточно для утраты инфекционного вируса. Результаты экспериментов показывают, что мелкие вирусы инактивируются рентгеновскими лучами значительно эффективнее, так как для них характерна большая величина отношения содержания в вирионе нуклеиновой кислоты к содержанию в нем белка, чем для крупных вирионов, более богатых белком.
Серологические методы
В целях определения вида данного вируса при изучении защитных процессов в организме больного человека или зараженного животного применяются серологические методы. Серология (от лат. Serum - сыворотка, жидкая составная часть крови) - это раздел иммунологии, изучающий реакции антигена специфическими защитными веществами, антителами, которые находятся в сыворотке крови. Антитела нейтрализуют действие вируса. Они связываются с определенными антигенными веществами, находящимися на поверхности вирусных частиц. В результате связывания молекул антител с поверхностной структурой вируса последний теряет свои патогенные свойства. Для установления уровня (количества) антител в сыворотке или определения типа данного вируса проводится реакция нейтрализации вируса . Ее можно проводить как на животных, так и на культуре клеток.
Минимальную концентрацию сыворотки, содержащей антитела, достаточную для того, чтобы нейтрализовать вирус, не дать ему проявить цитопатическое действие, называют титром сыворотки, нейтрализующей вирус. Эта концентрация может быть выявлена и с помощью метода бляшек.
Для обнаружения антител используется метод торможения гемагглютинации (склеивания эритроцитов под воздействием вируса) и метод связывания комплемента. Из методов, применяемых в вирусологии для различных исследовательских целей, можно еще упомянуть методы, при помощи которых вирусологический материал подготавливается для физических и химических анализов, которые облегчают изучение тонкого строения и состава вирусов. Эти анализы требуют большого количества совершенно чистого вируса. Очистка вируса - процесс, при котором из суспензии с вирусом устраняются все посторонние, загрязняющие ее частицы. В основном это кусочки и “обломки” клеток - хозяев. Одновременно с очисткой происходит обычно сгущение суспензии, повышение концентрации вируса. Так получается исходный материал для многих исследований.
Из отдельных методов очистки упомянем лишь наиболее эффективный - метод ультрацентрифугирования, который дает препараты вируса очень высокой концентрации.
Опишем вкратце процедуру получения и очистки вирусной суспензии. Процесс этот начинается с искусственного введения вируса в мозг подопытного животного. По прошествии нескольких дней вирус размножится в ткани мозга. При этом обнаружатся характерные нарушения функций нервной системы “хозяина”, и у животного выявятся признаки заболевания. Когда симптомы достигнут наибольшего развития, зверька умерщвляют, а его мозг, в тканях которого содержатся большие количества вируса, извлекают в стерильных условиях из черепа животного. Затем из мозга готовится, скажем ,10 %-ная суспензия. Кроме вирионов она содержит еще и большое количество кусочков нервной ткани, остатки кровеносных сосудов, кровяные тельца и другие биологические компоненты. Кусочки ткани и другие крупные частицы устраняются первым центрифугированием со скоростью 5000-10000 оборотов в минуту. Оно продолжается около получаса. Жидкость над осадком (суперкатакт) осторожно сливают в специальные пробирки для центрифугирования, сделанные из пластмассы или нержавеющей стали, поскольку стекло не выдерживает давление, которое развивается при высокоскоростном центрифугировании. А осадок обезвреживают дезинфицирующими средствами. Слитый “супернатант” обрабатывается затем уже в ультрацентрифуге.
Для седиментации мельчайших вирусов необходимо многочасовое ультрацентрифугирование, причем полученный осадок часто бывает не больше булавочной головки. Но и после такой обработки мы имеем не совсем чистый вирусный материал, в нем еще содержатся чужеродные примеси. Для тонких анализов этот осадок надо несколько раз обработать различными реактивами и повторить ультрацентрифугирование. Только тогда можно получить концентрированную суспензию вируса высокой чистоты, которая требуется для точных и достоверных биохимических, кристаллографических анализов или для наблюдений в электронно-оптических приборах.
В распоряжении вирусологов вообще много различных технических приспособлений, как , например , центрифугирование по градиентам концентрации, когда вирионы разделяются по степеням концентрации или по форме. Другой прибор, представляющий в наше время стандартное оборудование почти каждой научно-исследовательской вирусологической лаборатории - электронный микроскоп. Это дорогостоящий, большой и сложный аппарат.
Для получения изображения вирусов существует много различных методов, и все они прошли свои этапы развития. Чтобы обнаружить вирионы в клетках, в настоящее время пользуются методом ультратонких срезов Фиксированный материал, залитый эпоксидной смолой, разрезается тончайшим стеклянным или алмазным ножом. При помощи точных ультрамикротомов одну клетку можно разрезать более чем на тысячу тонких срезов. Полученные таким образом срезы обрабатываются затем специальными химикалиями, что обеспечивает лучшую их видимость.
Для наблюдения тонкого строения отдельных вирионов применяется метод негативного контрастирования (окрашивания), внедрение которого значительно повысило качественный уровень электронного микроскопирования. Вирусные частицы при этом осторожно смешиваются с раствором фосфовольфрамовой кислоты, дающей осадок, не пропускающий электронные лучи. В результате вирионы предстают в виде своих совершенно точных отпечатков, по которым можно изучать самые тонкие детали их поверхностей. При методе позитивного окрашивания (или “металлизирования” препарата) применяются такие вещества, которые способны выборочно прилипать к поверхности вирионов (например, специфические антитела, меченные ферритином, содержащим в своей молекуле железо и потому хорошо различимые в электронном микроскопе).
Белки вирусов
Вирусная ДНК
Главной структурной особенностью большинства вирусных молекул ДНК, как и ДНК из других источников, является наличие двух спаренных антипараллельных цепей. ДНК-геном вирусов, однако, невелик и поэтому здесь возникают вопросы, касающиеся концов спирали и общей формы молекулы ДНК, а не монотонной, фактически не имеющей концов “средней” части спирали. Полученные ответы оказались весьма удивительными: молекулы вирусных ДНК могут быть линейными или кольцевыми, двухцепочечными или одноцепочечными по всей своей длине или же одно цепочечными только на концах. Кроме того, выяснилось, что большинство нуклеотидных последовательностей в вирусном геноме встречается лишь по одному разу, однако на концах могут находиться повторяющиеся, или избыточные участки.
Из всех описанных до сих пор вирусных ДНК наиболее сложно организована ДНК вируса герпеса. Геном здесь, по-видимому, состоит из двух больших соединенных сегментов, каждый из которых имеет повторяющиеся концевые последовательности. Возможны четыре способа соединения двух таких сегментов конец в конец, и все они как будто бы встречаются в каждом препарате вирионов.
Наибольший из известных вирусов - вирус осповакцины имеет геном размером 15-108 дальтон. ДНК, выделенная из свежего препарата вирионов, по-видимому, имеет поперечные сшивки, так как не разделяется по две цепи. Одна из возможных моделей такой молекулы - гигантская, не подверженная денатурации кольцевая структура, образующаяся при замыкании концов линейной двойной спирали.
Помимо очень интересных различий в форме молекулы и в структуре концевых участков вирусных ДНК существуют также большие различия в величине генома. Среди наименьших “полных” вирусов (т.е. вирусов, способных размножаться в клетке-хозяине) можно назвать фаг ÆX174, парвовирусы, паповирусы, вирусы полиомы и SV40. С другой стороны, у крупных бактериофагов и вирусов человека и животных (паприляр, герпеса и осповакцины) геном значительно больше - от 1 до 1,5.108 дальтон, так что он мог бы кодировать более 100 белков. Действительно, у бактериофага Т4 сейчас идентифицировано больше ста генов.
В 1953 г. Уайетт и Коэн сделали неожиданное открытие, весьма существенное для последующих экспериментов: оказалось, что в ДНК Т-четных бактериофагов содержится не цитозин, а 5-гидроксиметилцитозин. Это отличие дало возможность изучать фаговые ДНК независимо от ДНК хозяина. Были открыты кодируемые фагом ферменты, которые изменяют метаболизм инфицированной клетки, и она начинает синтезировать компоненты, необходимые вирусу. Еще одно биохимическое отличие ДНК бактериофага состоит в том, что к ее гидроксиметилцитозину присоединены остатки глюкозы: последние, видимо, препятствуют прерыванию фаговой ДНК некоторыми ферментами хозяина.
В противоположность этому у вирусов животных ДНК почти не подвергается модификациям. Например, хотя ДНК клеток-хозяев и содержит много метилированных оснований, у вирусов имеется в лучшем случае лишь несколько метильных групп на геном. Большинство вирусных дезоксинуклеотидов не модифицированы, и поэтому нахождение несомненных модификаций представляло бы большой интерес.
Вирусная РНК
Исследования вирусной РНК составили один из самых значительных вкладов вирусологии в молекулярную биологию. Тот факт, что у вирусов растений реплицируемая генетическая система состоит только из РНК, ясно показал, что и РНК способна сохранять генетическую информацию. Была установлена инфекционность РНК вируса табачной мозаики, и выяснилось, что для инфекции необходима вся ее молекула; это означало, что интактность структуры высокомолекулярной РНК существенно для ее активности. Не менее важным результатом ранних исследований на том же вирусе явилась разработка методом выделения высокомолекулярной РНК и изучения ее свойств. Эти методы послужили в дальнейшем основой для изучения различных типов РНК, встречающихся у других вирусов.
Размеры вирионов РНК - вирусов сильно варьируют - от 7.106 дальтон у пикорнавирусов до >2.108 дальтон у ретровирусов; однако размеры РНК и, следовательно, объем содержащейся в ней информации различаются в значительно меньшей степени.
РНК пикорнавирусов - вероятно, наименьшая из известных - содержит около 7500 нуклеотидов, а РНК парамиксовирусов - едва ли не самая крупная - почти 15000 нуклеотидов. По-видимому, всем независимо реплицирующимся РНК-вирусам нужен какой-то минимум информации для репликационной системы и капсидного белка, но у них отсутствует очень сложная добавочная информация, которой могут обладать крупные ДНК-вирусы.
Вирусные белки
Кроме капсидных белков, образующих “футляр” для нуклеиновой кислоты, у вирусов с оболочками имеются и другие белки. Подобные примеры можно найти среди вирусов животных (в том числе насекомых), растений и бактерий. Кроме белков, входящих в состав нуклеопротеидного “ядра”, вирионы могут содержать еще вирус - специфические белки, которые были встроены в плазматические мембраны зараженных клеток и покрывают вирусную частицу, когда она выходит из клетки или “отпочковывается” от ее поверхности. Кроме того, у некоторых вирусов с оболочкой существует субмембранный матриксный белок между оболочкой и нуклеокапсидом. Вторую большую группу вирус-специфических белков составляют некапсидные вирусные белки. Они в основном имеют отношение к синтезу нуклеиновых кислот вириона.
Генетической информации
Механизм, благодаря которому генетическая информация ДНК “транскрибируется” в матричную РНК, а затем транслируется в белок, выяснился через несколько лет после того, как молекулярные биологи осознали, что нуклеотидные последовательности в ДНК генов прямо ответственны за аминокислотные последовательности белка. Тот факт, что некоторые вирусы растений и животных содержат в качестве генетического материала РНК и что вирусная РНК сама по себе инфекционна, уже говорит о вероятной промежуточной роли РНК в переносе генетической информации. Когда Жакоб и Моно предсказали существование короткоживущего, нестойкого посредника между генами и аппаратом белкового синтеза, поиски молекулы РНК с такими свойствами были уже начаты. Первые указания на наличие фаговой РНК, которая вновь синтезировалась после фаговой инфекции и была ассоциирована с предсуществовавшими бактериальными рибосомами. Окончательное доказательство роли м РНК в синтезе полипептидов было получено в опытах с бесклеточной белок-синтезирующей системой. Экстракты нормальных клеток Е coli могли быть запрограммированы для синтеза специфических белков фага F 2 добавлением РНК из этого фага.
В дальнейшем м РНК была идентифицирована и изучена как в бактериальных, так и в животных клетках. Позже было показано, что многие молекулы м РНК, и вирусные и невирусные, способны программировать синтез специфических белков в самых разных клеточных экстрактах. Это подтверждало, что специфичность синтеза белка в различных системах зависит от м РНК, а не от системы, синтезирующей белок. Во всех клетках первым этапом экспрессии генов оказалась “транскрипция” ДНК с образованием соответствующей м РНК.
Углеводы
Четверым компонентом, обнаруживаемым иногда в очищенных вирусных препаратах, являются углеводы (в количестве, превышающем содержание сахара в нуклеиновой кислоте). Глюкоза и гентибиоза, обнаруживаемая в составе Т-четных и некоторых других фагов, - компоненты нуклеиновой кислоты и рассматриваются в разделе, посвященном составу ДНК и РНК. Помимо этих “экстра”-углеводов, в составе бактериофагов могут быть и другие полисахариды. Единственная группа вирусов, в которой наличие углеводов точно доказано, - вирусы животных, хотя различные авторы приводят весьма противоречивые данные как о количественном, так и о качественном составе их углеводного компонента. В составе элементарных телец вируса гриппа и классической чумы птиц находятся до 17 % углеводов.
Ферменты вирусов
Аспекты проблемы
Термин “ферменты вирусов” может употребляться в узком и широком смысле слова. В первом случае имеется в виду ферментативная активность, связанная с покоящимися вирусными частицами, с вирусом внеклеточным. Широкое толкование этого термина обозначает всю совокупность ферментных систем, принимающих участие в синтезе вируса в зараженной клетке, т.е. ферменты размножающегося внутриклеточного вируса.
Было доказано, что присутствие в вирусных препаратах одного фермента представляет собой достаточно редкий феномен, установленный в настоящее время с полной достоверностью для лизоцимной и фосфатозной активностей бактериофагов и нейтраминидазной активности миксовирусов. Во всех остальных случаях либо не было получено убедительных доказательств собственно вирусного происхождения определяемого фермента, либо, наоборот, твердо доказано происхождение активности фермента от клеточных загрязнений.
Типы организации вирионов
Основным структурным компонентом вириона является капсид, в котором заключена нуклеиновая кислота. Капсиды построены из белковых субъединиц, собранных строго определенным образом в соответствии с относительно простыми геометрическими принципами. Именно поэтому капсиды совершенно различных вирусов, например фагов, вирусов животных или вирусов растений, могут быть построены точно по одному плану и быть практически неразличимыми морфологически.
Крик и Уотсон, исходя из того, что содержащаяся в нуклеиновой кислоте вируса генетическая информация недостаточна для того чтобы вирус мог кодировать множество различных белков, пришли к выводу, что капсиды вирусов должны быть построены из множества идентичных субъединиц. Существуют два типа организации, при которой идентичные асимметричные субъединицы, такие, как молекулы белка, могут соединиться друг с другом с образованием правильного капсида: спиральная сборка и формирование замкнутых белковых оболочек. Соответственно существуют лишь два типа капсидов : спиральные и изометрические (или квазисферические); капсиды всех вирусов относятся к одной из этих двух категорий. Каждый из этих типов структур образуется белками капсидов в результате процесса, называемого самосборной. Этот процесс идет лишь в том случае ,если он энергетически выгоден. Это означает, что из всех возможных форм капсида реализуется именно та, которая отвечает минимуму свободной энергии специфических белков данного вируса. Реальная форма и размеры капсида, таким образом, определяются специфической формой молекул белка, являющихся субъединицами, из которых строится капсид, и характером связей, которые эти субъединицы образуют друг с другом. Стабильность структуры, возникающей в конечном счете, зависит от числа и силы слабых связей, образующихся между белками, входящими в состав данного капсида. Чем больше свободная энергия, выделяющаяся в процессе сборки капсида, тем прочнее собранный капсид.
Спиральные капсиды. Вирионы многих вирусов растений и ряда фагов имеют “голый” спиральный капсид, без внешней оболочки. Наиболее хорошо изученным вирусом данной группы является ВТМ.
Капсиды ВТМ - это относительно жесткие по структуре палочки. Столь же жестки по структуре капсиды по крайней мере еще одного фага. Капсиды других вирусов растений , например вируса желтухи сахарной свеклы и Х-вируса картофеля, тоже представляет собой спиралеобразные палочки, но палочки эти гибкие. Гибки также спиральные капсиды ряда обладающих внешней оболочкой вирусов животных. Гибкость этих палочковидных капсидов свидетельствует о том, что субъединицы, из которых они построены, образуют друг с другом менее прочные и более подвижные связи, чем те, которые образуются между субъединицами палочек типа вирионов ВТМ.
Изометрические (квазисферические) капсиды. Капсиды многих вирусов по форме почти идентичны сфере, однако электронная микроскопия показывает, что на самом деле эти капсиды представляют собой не сферы, а правильные многогранники. Такие капсиды называют изометрическими, так как их линейные размеры вдоль ортогональных осей идентичны.
Сложные капсиды. Серологические и морфологическое исследование капсидов показало, что они представляют собой сложные структуры. При детальном электронно-микроскопическом анализе строения капсидов на их поверхности части удается обнаружить выступы, иначе называемые шипами, которые обычно расположены на каждой из 12 вершин икосаэдра. Эти шипы играют важную роль в инициации инфекции. В литературе описан “волосатый” фаг, у которого от поверхности головки вириона отходят многочисленные фибриллы.
У самых крупных фагов имеются отростки, “хвосты”. Эти отростки являются органами, при помощи которых фаги прикрепляются к поверхности бактерии-хозяина. Существует мало биологических объектов, которые были бы более удивительны, чем Т-четные фаги.
Вирионы этих фагов собраны более чем из 50 видов различных белков и обладают высокоорганизованной, изумительно сложной и правильной структурой. Воротничок и базальная пластинка этих фагов обладают гексагональной симметрией. Белковая оболочка их головки представляет собой деформированный икосадельтаэдр с дополнительным рядом субъединиц, вследствие чего в одном направлении она длиннее, чем в других. Гексагональный отросток такого фага каким-то образом присоединен к макушке головки по плану пентагональной симметрии. При сборке фага Т4 иногда образуются вирионы с двумя отростками вместо одного. Многие вирусы животных, некоторые вирусы растений и, по крайней мере ,один класс бактериофагов имеют внешнюю оболочку, окружающую их капсиды. Неотъемлемой структурой этих оболочек, как и всех других биологических мембран, является двойной слой фосфолипидов, в который погружены молекулы специфических белков. В тех случаях, когда двойной слой фосфолипидов расположен на поверхности вириона и, следовательно, легко доступен для эфира или других растворителей липидов, вирионы легко разрушаются и интактивируются такими растворителями. Фосфолипиды внешних оболочек вирусов бывают идентичны липидам клетки-хозяина или сходны с ними, что, например, характерно для большинства оболочек вирусов животных, в других случаях наблюдаются достаточно выраженные различия между фосфолипидами. Оболочки вирусов животных формируются в составе плазматической или ядерной мембраны клетки. Электронные микрофотографии зараженных вирусами клеток показывают, что белки вируса появляются на небольших участках плазматической мембраны клетки, к которой в последствии мигрируют капсиды вируса, что, в конечном счете, ведет к формированию вириона и его отпочкованию. Следует, однако, подчеркнуть, что далеко не у всех вирусов животных вирионы имеют квазисферическую форму. Например, вирионы рабдовирусов по форме напоминают пулю; их оболочка, так же как и у других вирусов животных, образуется в результате отпочкования от плазматической мембраны клетки. Оболочки других вирусов, например вируса оспы, построены значительно сложнее и полностью формируются в цитоплазме клетки. Такие вирионы нечувствительны к действию эфира, не дают перекрестных иммунологических реакций с белками клетки-хозяина и, по-видимому, состоят только из компонентов, специфичных для вируса.
Проблемы и методология
Вирусная частица, или вирион, - это инертная статическая форма вируса. Когда вирионы находятся вне клетки, они не размножаются и в них не происходит никаких метаболических процессов. Все динамические события - биосинтез вирусных компонентов, повреждение организма-хозяина - начинаются лишь тогда, когда вирус проникает в клетку. Даже у многоклеточного хозяина решающие события при вирусной инфекции происходят на клеточном уровне. Распространение вируса совершается в результате повторных циклов взаимодействия вируса с клетками и рассеяния вирионов во внеклеточной среде. Все то, что мы уже знали о различных компонентах вирионов, заставляет предполагать, что внутри клетки-хозяина организация этих компонентов должна быть не такой, как в свободной вирусной частице. И действительно, в зараженных вирусом клетках происходит глубокая перестройка вирусного материала, а часто также и компонентов клетки-хозяина. Возникает новая система - комплекс вирус-клетка, функциональная организация, которой определяется взаимодействием вирусных и клеточных функций. Активные механизмы этого комплекса существенно отличаются от механизмов незараженной клетки.
Сборка вирионов
В отличие от ранних этапов развития фага ход сборки капсидов и полных вирионов не программируется последовательной экспрессией фаговых генов. По-видимому, все белки вириона и другие поздние белки, как, например, лизоцим фага, синтезируются более или менее одновременно и, накапливаясь, образуют “фонд предшественников”. Отсюда они извлекаются путем прямого специфического взаимодействия с другими белковыми молекулами, в результате чего возникают субструктуры, которые затем собираются уже в цельные вирионы. Общий ход сборки стал понятен из результатов опытов in vivo с мутантными фагами и при изучении лизатов; однако после того, как была открыта возможность сборки предобразованных фаговых предшественников in vitro, с помощью этого эффективного метода было получено много новых данных. Сборка вириона состоит из четырех основных этапов, приводящих к образованию промежуточных структур, взаимодействующих между собой лишь в определенных критических точках.
Базальная пластинка фагового отростка построена из 15 белков, в синтезе которых , кроме основных ,участвуют и некоторые другие гены. Весьма интересно, что пластинка содержит, по-видимому, несколько молекул двух кодируемых фагом ферментов - дигидрофолатредуктазы и тимидилатсинтетазы, а также некоторое количество фолиевой кислоты.
Собранная базальная пластинка после присоединения к ней белка гена Б4 служит затравкой для сборки стержня отростка, состоящего из 144 молекул продукта гена 19. Вокруг стержня происходит сборка чехла, представляющего собой полимер, построенный из 144 молекул продукта гена 18. Продукты двух других генов стабилизируют всю эту структуру. Непонятно, каким образом достигается постоянство длины стержня при сборке. Возможно, что существуют еще какие-то линейные белки, отмеряющие нужное расстояние, или контакт с базальной пластинкой придает субъединицам стержня такую специфическую конформацию, которая имеет минимум свободной энергии только в случае определенного размера стержня. Эта последняя гипотеза указывает на то, что процесс сборки, возможно, не является чисто механическим.
Оболочка фаговой головки, построенная из более чем 10 белков, образуется в результате активности многих генов. Основной из них представляет собой продукт гена 23, входящий в состав законченной головки лишь после отщепления от основного полипептида фрагмента с мол. весом 10000. Протеолиз осуществляется главным образом продуктом гена 22, а также, возможно, гена 21, отсутствующим в зрелом вирионе. Однако белок гена 22 представляет собой, по существу, внутренний белок, превращающийся в ,конце концов, в результате самопереваривания в мелкие пептиды, причем некоторые из них остаются в головке фага. Здесь присутствуют также и другие внутренние белки, подвергающиеся частичному перевариванию белком гена 22.
После окончания раздельной сборки головки и отростка они самопроизвольно объединяются как in vitro, так и in vivo.
Нити отростка состоят из продуктов четырех генов. Их сборка идет независимо, но прикрепляются они к базальной пластинке только после соединения головки и отростка. Для этой реакции нужен белок гена 63, а также взаимодействие с “усиками”, которые прикреплены к воротничку, расположенному между головкой и отростком.
Головка фага имеет специфическую форму, определяемую белком гена 23 и другими белками. Ее строение изменяется в результате мутаций соответствующих генов. Нормальная головка фага 74 имеет форму неправильного икосадельтаэдра, по длинной оси которого расположен дополнительный ряд субъединиц, состоящих из 840 копий белка гена 23. Субъединицы белка гена 20 располагаются на вершинах. Такая форма головки отражает наличие определенных пространственных ограничений, накладываемых белок - белковыми взаимодействиями. При отсутствии этих ограничений строение фага сильно изменяется.
Бактериофаг l
Бактериофаг l является умеренным фагом, т.е. он может либо переходить из клетки в клетку в процессе инфекции, либо передаваться от одного поколения к другому в ходе размножения данного бактериального штамма. В последнем случае латентный геном фага называется профагом, а клетки, несущие такой профаг, - лизогенными. Присутствие генома фага в лизогенной культуре можно обнаружить при спонтанном освобождении фага из небольшой части клеточной популяции, в которой произошло спонтанное развитие фага.
Естественным хозяином фага l служит штамм Е coli K 12, генетика которого хорошо изучена. Поэтому фаг l был избран в качестве объекта интенсивных исследований, направленных на выяснение природы лизогении. Исходный дикий штамм К 12 является лизогенным по фагу , который не образует бляшек на этом штамме, обладающем, подобно большинству лизогенных бактерий, иммунитетом по отношению к фагу, содержащемуся в нем в виде профага. Обычно фаг l размножается на вариантах штамма К 12, “извлеченных” от профага. Такие извлеченные варианты обнаруживаются в небольших количествах среди клеток, выживших после интенсивного облучения. При образовании устойчивой лизогенной клеточной линии должны быть выполнены следующие два условия. Во-первых, профаг должен находиться в клетке в таком состоянии, чтобы при клеточном делении каждая дочерняя клетка получала по крайней мере одну его копию. В случае фага l эта задача решается путем включения его ДНК в бактериальную хромосому, в результате чего ДНК профага пассивно реплицируется и сегрегируется с помощью аппарата клетки-хозяина. Во-вторых, те вирусные гены, продукты которых потенциально способны нарушить целостность клетки, должны регулироваться таким образом, чтобы клетки могли благополучно расти и размножаться. Это достигается путем репрессии транскрипции генов. В клетках, лизогенных по фагу l, не транскрибируется ни один из вирусных генов, необходимых для продуктивной инфекции. В лизогенных культурах обнаруживается лишь очень небольшое количество вирусной м РНК.
Вирусы животных
РНК-содержащие вирусы
Одно из резких различий между вирусами бактерий и вирусами животных состоит в неодинаковой продолжительности их одиночного цикла репродукции. Так, одиночный цикл репродукции даже у наиболее быстро размножающихся вирусов животных продолжается 5-6 г, а у ряда других вирусов - несколько дней. Кроме того, многие вирусы вызывают лишь персистентные инфекции, при которых клетки-хозяева не погибают, хотя вирус все время образуется и в них и в их потомках. Столь длительный цикл репродукции вирусов животных по сравнению с более коротким циклом репродукции большинства фагов, вероятно, зависит от относительных размеров соответствующих клеток-хозяев.
Многие особенности вирусов животных связаны со специфическими особенностями архитектуры эукариотических клеток. ДНК большинства ДНК-содержащих вирусов синтезируется в ядре клетки. Напротив, белки всех без исключения вирусов синтезируются в цитоплазме. Заражение клеток вирусами в принципе может привести к двум последствиям. Зараженная клетка может либо погибнуть, образовав при этом большое количество вируса (литический тип взаимодействия вирусов с клетками), либо продолжать жить и делиться, синтезируя небольшие количества вируса. Культуры размножающихся клеток, продуцирующих вирус, называют персистентно инфицированными. Почти любой вирус животных при соответствующих условиях может вызвать персистентную инфекцию. Более того, многие вирусы лизируют клетки очень редко, и обычно в зараженных клетках устанавливается состояние устойчивого равновесия - образуется персистентно инфицированная культура клеток.
Установлено, что при успешной литической инфекции в зараженных клетках происходит пять четко отличающихся друг от друга событий, реализуемых функционально активными вирус-специфическими белками. В ходе одиночного цикла репродукции вируса эти события развиваются либо параллельно, либо последовательно. Их временная последовательность определяется специфическими свойствами каждого вируса. Это следующие события: 1) подавление вирусом ряда клеточных функций; 2) синтез вирусных м РНК; 3) репликация вирусного генома; 4) морфогенез вирионов; 5) освобождение вирионов из клетки.
Согласно правилам спаривания оснований по Уотсону и Крику, для каждой данной молекулы РНК можно записать комплементарную ей нуклеотидную последовательность. Для удобства классификации вирусов вирусную м РНК условно обозначают как “плюс”-цепь, а комплементарную ей последовательность, как “минус”-цепь. Исходя из структурной взаимосвязи между нуклеиновой кислотой вириона и его м РНК, все вирусы животных можно разделить на шесть классов. Конечно, эту классификацию можно применить также и к бактериофагам, и к вирусам насекомых, и растений, но в настоящее время разумнее всего ограничить ее применение вирусами животных.
К классу I относятся вирусы, содержащие двухцепочечную ДНК, например вирус осповакцины
м РНК этих вирусов синтезируется таким же образом, как и клеточные м РНК, геном вируса - двухцепочечная ДНК - служит матрицей для синтеза м РНК. Класс II включает вирусы, содержащие одноцепочечную ДНК. Их м РНК по нуклеотидному составу, вероятно, полностью гомологична ДНК вириона. Поэтому м РНК должны транскрибироваться с “минус”- цепи ДНК, входящей в состав репликативного промежуточного комплекса-вируса. К остальным классам относятся вирусы, у которых геном служит РНК. Класс III включает вирусы, содержащие двухцепочечную РНК, например реовирусы. Эта РНК служит мартицей для асимметричного синтеза вирусных м РНК. Оказалось, что у всех до сих пор обнаруженных вирусов класса III геном сегментирован, т.е. состоит из множества хромосом, каждая из которых кодирует один полипептид. Вирусы, относящиеся к классу IV, содержат “плюс”-цепи РНК. Геном этих вирусов имеет ту же полярность, что и их м РНК. Вирусы данного класса делятся на два подкласса. У вирусов подкласса Ivа, типичным представителем которых является вирус полиомиелита, все белки синтезируются при трансляции одной-единственной молекулы м РНК. Образующийся при этом полипротеин расщепления затем протеолитическими ферментами с образованием функционально активных белков. Все м РНК этих вирусов имеют ту же длину, что и РНК-геном. Вирусы подкласса Ivв называют также тогавирусами. Они синтезируют в клетке по меньшей мере два вида вирусных м РНК: м РНК одного вида имеет ту же длину, что и РНК вириона, а м РНК второго вида представляет собой фрагмент РНК вириона.
Вирусы класса V называют также “минус” - РНК-вирусами. По нуклеотидной последовательности м РНК этих вирусов комплементарна РНК вирионов. Следовательно, вирион содержит матрицу для синтеза м РНК, но не для синтеза белков. Различают два подкласса вирусов класса V. Геном вирусов подкласса Vа представляет собой одну молекулу РНК, с которой транскрибируется целый ряд м РНК, причем все до сих пор изученные м РНК этих вирусов моноцистронные. Вирусы подкласса Vв имеют сегментированный геном. Каждый из сегментов генома служит матрицей , с которой транскрибируется лишь один вид молекул м РНК. Один из этих м РНК кодируют мноцистроенные, а другие - полицистроенные полипротеины. Вирусы, относящиеся к классу VI, называют также ретровирусами. Это самые необычные из всех известных РНК-содержащих вирусов, ибо при транскрибировании их РНК синтезируется не РНК, как обычно, а ДНК, которая в свою очередь служит матрицей для синтеза м РНК. Следовательно м РНК этих вирусов и РНК их вирионов не отличаются по полярности друг от друга, а некоторые из них идентичны и по длине. Из удивительных свойств этих генетических систем вытекает не мало замечательных следствий.
Плюс - РНК-вирусы:
пикоркавирусы (класс IV а)
Вирусы этого подкласса, из которых наиболее интенсивно изучался вирус полиомиелита, известны под общим названием “пикоркавирусы”. К их числу относятся также вирус менго, вирус энцефаломиокардита (пикоркавирусы мышей), риновирусы (вирусы, вызывающие у человека один из видов острых респираторных заболеваний, - так называемую простуду_ и вирус ящура.
Тогавирусы (класс IV в)
К тогавирусам относятся все плюс - РНК-вирусы, в которых образуются м РНК двух типов, различающиеся по своим размерам. Название “тогавирусы” отражает особенности внешней оболочки их вирионов. Синтез этой оболочки рассматривается в другом разделе, а здесь мы обсудим только механизмы синтеза РНК и белков, используемые вирусами данного класса. Прежде чем перейти к рассмотрению молекулярной биологии тогавирусов, интересно вспомнить, как были обнаружены вирусы этой группы. Эпидемиологи установили, что многие вирусы, вызывающие заболевания позвоночных животных, переносятся клещами или комарами.
Тогавирусы, патогенные для человека, обычно эндемичны для различных видов животных и передаются человеку лишь через укус какого-либо членистоногого переносчика. Вирусы этой группы были названы арбовирусами (означает “переносимый членистоногими”). Впоследствии, однако, стало ясно, что под этим названием объединены вирусы, резко различающиеся по своим биохимическим свойствам. Общим у них обычно является способность размножаться как в клетках насекомого-переносчика, так и в клетках тех или иных позвоночных животных. Основная часть арбовирусов по своим биохимическим свойствам относится к тогавирусам. Серологически тогавирусы делятся на две группы (А и В), которые в настоящее время называются альфавирусами и флавирусами соответственно. К числу тогавирусов относятся по меньшей мере два вируса, не являющиеся арбовирусами, - вирус краснухи и вирус, повышающий в крови зараженного им животного содержание лактатдегидрогеназы..
Вирусы, содержащие минус - цепь РНК (класс V ):
Внешние оболочки вирусов
Общим свойством тогавирусов, минус-РНК-вирусов и ретровирусов является наличие у них липопротеидной внешней оболочки, окружающей рибонуклеопротеидную сердцевину. Механизм образования такой оболочки у всех вирусов один и тот же: рибонуклеопротеид связывается с внутренней поверхностью измененного участка плазматической мембраны клетки и при выходе из клетки окружается этой измененной мембраной. Такой процесс называется почкованием, а образующаяся вирусная частица в тот период, когда она еще связана с плазматической мембраной, носит название почки. На электронных микрофотографиях ультратонких срезов клеток эти почки очень хорошо видны, ибо они представляют собой характерно измененные оболочки плазматической мембраны.
Строение вириона
В состав вирионов, имеющих внешнюю оболочку, входят три главных класса структурных белков: глинопротеиды, белки матрикса и белки нуклеокапсида. Макроструктура вириона определяется свойствами поверхности двойного слоя липидов, окружающего нуклеокапсид. Наружная поверхность двойного липидного слоя покрыта гликопротеидом, а внутренняя контактирует с белками матрикса или нуклеокапсида. Все липиды, содержащиеся во внешней оболочке вириона, имеют клеточное происхождение, так как не обнаружено какого-либо вирус-специфического обмена липидов. По своему составу липиды вириона очень сходны с липидами плазматической мембраны клетки-хозяина: в их число входят холестерин, гликолипиды и фосфолипиды. Клетки различных видов существенно различаются между собой по липидным компонентам плазматических мембран. Поэтому липидный состав вируса, формирующегося в данной клетке, точно соответствует липидному составу ее плазматической мембраны.
Гликопротеиды, содержащиеся в оболочках различных вирусов, обладают как специфическими свойствами, так и свойствами, общими для всех вирусных гликопротеидов. Все они находятся на внешней поверхности вириона и могут быть удалены под воздействием протеаз. Поскольку протеазы отщепляют от интактных вирионов только гликопротеиды, ясно, что наружу из двойного слоя липидов выступают лишь эти молекулы вирусных белков. Следует отметить, что протеазы удаляют лишь часть молекулы гликопротеида. Другая ее часть - “ножка”, состоящая из высокогидрафобного полипептиада - по-видимому, погружена в двойной липидный слой и недоступна для протеазы.
Сборка вириона
На первой стадии формирования вириона происходит синтез его индивидуальных белков. Белки каждого из трех классов синтезируются, по-видимому, независимо друг от друга и часто на отдельных м РНК.
Гликопротеиды образуются на связанных с мембранами м РНК и в свободном состоянии в клетках никогда не встречаются. Молекулы белка “созревают” по мере их передвижения из шероховатого эндоплазматического ретикулума в гладкий, а затем, возможно, в аппарат Гольджи и, наконец, в плазматическую мембрану клетки. Присоединение углеводов к белкам происходит при перемещении последних по внутриклеточным мембранам. В конце концов они выходят на поверхность клетки, где, вероятно, свободно плавают в жидком двойном липидном слое плазматической мембраны.
Парвовирусы
Самыми простыми из всех известных вирусов, вероятно, являются парвовирусы. Их геном представлен одноцепочечной ДНК с мол. Весом всего 1,5х106 дальтон. Однако для единственного кодируемого этим вирусом продукта - белка его капсида - даже эта малая молекула слишком велика. Размножение этого крошечного паразита, по-видимому, действительно полностью зависит от соответствующих систем клетки-хозяина. Существует два основных класса парвовирусов - автономные и дефектные. Все до сих пор известные автономные парвовирусы - это вирусы грызунов; для транскрипции, репликации и других функций эти вирусы используют соответствующие ферменты клетки-хозяина. Дефектные парвовирусы размножаются лишь в клетках, которые заражены одновременно аденовирусом, выполняющим некоторые необходимые функции. До сих пор не найдено нормальных клеток, в которых могли бы размножаться дефектные парвовирусы. В клетках, находящихся в стационарной фазе, автономные парвовирусы не размножаются, они размножаются лишь в клетках ДНК которых уже реплицируется, т.е. в клетках, находящихся в S-фазе клеточного цикла.
Это ограничение касается типа клеток, поражаемых данными вирусами. Парвовирусы вызывают аномалии развития у эмбрионов и дефекты растущих тканей у новорожденных. Они вызывают также нарушения функции кишечника, что, вероятно, является следствием их размножения в быстро делящихся клетках крипт.
Дефектные парвовирусы размножаются только в клетках, зараженных аденовирусом - помощником, и не зависят от фазы клеточного цикла. Их вирусом- помощником могут быть только аденовирусы. Герпесвирусы также способны выполнять некоторые из необходимых функций вируса - помощника, однако полные инфекционные частицы парвовирусов в этом случае не образуются. Именно по этой причине дефектные парвовирусы называют также “аденоассоциированными” вирусами (ААВ).
Одно из характерных различий между автономными и дефектными парвовирусами состоит в том, что геном первых представлен уникальной одиночной цепью ДНК, а геном дефектных парвовирусов - эквимолярными количествами одноцепочечных комплелянтарных друг другу молекул ДНК. При гибридизации одноцепочечные молекулы ДНК, выделенные из вирионов ААВ, легко превращаются в молекулы двухцепочечных ДНК. Вирионы парвовирусов близки по величине к рибососмам - их диаметр 20 нм. Не содержащие липидов капсиды этих вирусов состоят из трех полипептидов различной длины. Молекулярный вес самого большого из них 90000 дальтон. Судя по пептидной карте, малые полипептиды представляют собой части большого; поэтому полагают, что вирусная м РНК кодирует только полипептид с мол. весом 90000.
Паповавирусы
Паповавирусы известны лучше других благодаря принадлежащим к этой группе подробно исследованным онкогенным вирусам - вирусу полиомы и SV40, которые размножаются лишь в очень узком кругу клеток млекопитающих. Обычно при изучении онкогенных свойств этих вирусов, имеется в виду их способность трансформировать клетки in vitro - ими заражают клетки тех видов, которые они трансформируют, но в которых не размножаются, а следовательно, и не вызывают их лизис.
В состав группы паповавирусов, кроме вирусов полиомы и SV40, входит ряд других вирусов. Свое наименование паповавирусы - группа получила от названий трех вирусов: вируса кроличьей папилломы, вируса полиомы (по) и вакуолизирующего (ва) обезъянеьего вируса, тип 40 (SV40). У человека эти вирусы не вызывают заболеваний, хотя SV40 иногда заражает клетки человека. У людей широко распространены три других паповавируса - вирус JC, ВК и вирус бородавок. Предполагается, что вирус JC является этиологическим агентом прогрессирующего дегенеративного заболевания центральной нервной системы человека. Вирус ВК часто обнаруживают в моче лиц, принимавших иммунадепрессанты, однако пока его не связывают с какой-либо патологией у человека. Вирус бородавок человека, как и вирусы папиллом животных, вызывает лишь доброкачественную пролиферацию эпидермиса.
Вирусы паполломы плохо размножаются в клеточных культурах, поэтому до сих пор изучены в основном, лишь их физические свойства. Установлено, что их ДНК несколько крупнее, чем ДНК вирусов SV40 и полиомы.
Аденовирусы
Хотя в вирионах аденовирусов содержится в 608 раз больше ДНК, чем в паповавирусах, и геном аденовирусов кодирует соответственно большее число белков, циклы репродукции этих вирусов в основном сходны. Так, у аденовирусов, как и у паповавирусов, имеется механизм, контролирующий переключение синтеза ранних макромолекул на синтез поздних, а их м РНК. Также считываются с обеих цепей вирусной ДНК. Однако ДНК аденовирусов - линейная молекула, и поэтому механизм ее репликации должен отличаться от механизма репликации ДНК паповавирусов. В отличие от ДНК паповавирусов частота рекомбинации ДНК аденовирусов достаточно велика, благодаря чему последние можно изучать и методами формальной генетики.
Разнообразие аденовирусов
Аденовирусы выделены от самых разнообразных видов животных. Более того, от каждого из этих видов выделено много различных аденовирусов. Так, среди аденовирусов человека идентифицирован 31 серологический тип. Однако в молекулярно-биологическом аспекте аденовирусы весьма сходны, поэтому при дальнейшем обсуждении мы не будем проводить между ними различий. Аденовирусы в основном вызывают острые респираторные заболевания; некоторые серотипы аденовирусов человека при введении хомячкам вызывают у них опухоли. Почти все штаммы аденовирусов способны вызывать трансформацию фибробластов крысы в культуре, но ни один из этих вирусов не имеет отношения к злокачественным опухолям у человека. Из сказанного ясно, что аденовирусы представляют интерес и как инфекционные агенты, вызывающие респираторные заболевания у человека, и как вирусы, способные вызывать опухоли, и как объекты молекулярно-биологических исследований.
Вирионы аденовирусов отличаются изяществом структуры. В синтезе вирусных частиц участвуют 14 видов белков, а быть может, и больше. В это число входят и белки, из которых построены компоненты поверхности вириона - гексоны, пентоны и фибриллы.
Герпесвирусы
Герпесивирусы, столь различные по характеру репродукции, но весьма сходные морфологически и по содержанию ДНК, составляют часть биохимически гомогенной группы. Наиболее детально изучены герпесвирусы, вызывающие лизис зараженных клеток . К их числу относятся вирусы простого герпеса, типы 1 и 2 и ряд быстро размножающихся герпесвирусов животных. Из вирусов этой группы, не вызывающих лизиса, наиболее изучен вирус Эпштейна-Барр, вызывающий инфекционный мононуклеоз - этот вирус постоянно выделяют из клеток двух видов опухолей человека - лимфомы Беркитта и карциномы носоглотки. В отличие от вирусов простого герпеса типов 1 и 2, размножающихся в культурах многих клеток и вызывающих лизис, вирус Эпштейна-Барр заражает только В-лимфоциты приматов и размножается не во всех из них.
ДНК герпесвирусов кодирует не менее 49 различных белков, для синтеза которых используется почти вся кодирующая способность вирусного генома. Изучение физиологии столь сложной системы - задача далеко не легкая.
Поксвирусы
У всех ДНК-содержащих вирусов, о которых речь шла выше, ДНК синтезируется в ядре зараженной клетки, там же и созревают их вирионы. Все стадии размножения поксвирусов происходят только в цитоплазме. Следовательно, репродукция поксвирусов происходит в совершенно иных условиях по сравнению с “ядерными” ДНК-содержащими вирусами. Известно большое разнообразие поксвирусов. Наиболее важным из них для человека является вирус натуральной оспы. Однако наиболее детально изучен вирус осповакцины и родственные ему вирусы кроличьей оспы и коровьей оспы. Все поксвирусы имеют общий антиген.
Ретровирусы
Ретровирусы обладают свойствами как РНК, так и ДНК-содержащих вирусов. В вирионе ретровирусов содержится РНК, однако внутри клетки они существуют в виде ДНК, интегрированной с геномом клетки-хозяина. По существу, РНК этих вирусов, проникая в клетку, превращается в ее гены, которые могут передаваться потомкам в виде стабильных интегрированных молекул ДНК. ДНК-вирусов, которые наследовались бы подобным образом, не обнаружено, так как все ДНК- содержащие вирусы вызывают продуктивную инфекцию и убивают клетки, в которых они размножаются. Включаться в геном клетки-хозяина ДНК-содержащие вирусы могут только в случаях “непродуктивных” вирусных инфекций. Ретровирусы, напротив, размножаясь путем почкования, подобно многим другим РНК- вирусам, поддерживают продуктивную инфекцию, не вызывая гибели клетки-хозяина. Из сказанного ясно, что центральная проблема, без решения которой нельзя понять механизм репродукции этих вирусов, состоит в том, каким образом они превращаются из РНК-вирусов в ДНК-гены; этот процесс был назван обратной транскрипцией, ибо здесь направление потока биологической информации изменено на обратное.
Обнаружено много самых разнообразных ретровирусов. Некоторые из них способны вызывать злокачественные опухоли. Лучше других изучены вирус саркомы Рауса и вирусы, вызывающие лейкозы у кур и мышей. Из всех известных РНК-содержащих вирусов злокачественные опухоли могут вызвать только ретровирусы. Именно поэтому их принято называть общим термином “опухолеродные РНК-вирусы”, хотя многие ретровирусы не вызывают ни злокачественных, ни каких-либо иных клинически выраженных заболеваний. Поэтому в единую классификационную группу их объединяет лишь способ репродукции. Подобно другим группа вирусов, различные виды ретровирусов также отличаются друг от друга по размеру и морфологическим особенностям вирионов, числу белков, а также по кругу чувствительных хозяев.
Интерферон
Рассматривая здесь интерферон только как белок, синтезируемый клеткой в ответ на вирусную инфекцию и придающий устойчивость к инфекции другим клеткам, это значило бы игнорировать историю открытия интерферона и связь его с давно известным явлением интерференции вирусов.
Уже давно было известно, что животное часто приобретает защиту от вирулентного действия одного вируса в результате одновременного или предшествующего заражения менее вирулентным штаммом того же вируса или каким-либо другим, неродственным вирусом. Впервые это явление было подвергнуто количественному анализу при изучении тормозящего действия ненейротропных штаммов вируса гриппа на размножение нейратропного штамма. Такое действие оказывает не только живой вирус: образование инфекционного вируса гриппа в куриных эмбрионах вирусом гриппа, облученным ультрафиолетом.
Айзекс и Линдеман обнаружили, что аллантоисная жидкость куриных эмбрионов, в которые был введен облученный вирус, тоже обладает интерферирующей активностью. Вещество, ответственное за эту активность, было названо интерфероном. Оно блокирует репродукцию самых различных РНК- и ДНК- вирусов как в куриных эмбрионах, так и в культурах клеток. Интерферон образуется и в организме многих животных. Это также синтезирует in vitro клетки самых различных типов, как нормальные, так и злокачественные, хотя и в весьма разных количествах. Особенно хорошими продуцентами интерферона могут служить клетки Lмыши и специально выведенная линия фибробластов человека. Большие количества интерферона вырабатывают также циркулирующее в крови лейкоциты. Наконец, некоторые ткани, по-видимому, накапливают интерферон, так как введение в организм различных неспецифических токсичных веществ, например бактериального эндотоксина, быстро приводит к появлению в сыворотке крови больших количеств вещества, тормозящего размножение вирусов - скорее всего интерферона.
Одно время полагали, что интерфероны строго водоспецифичны, однако это неверно. Например, интерфероны человека и обезьяны защищают от вирусов как клетки человека, так и клетки обезьян, позднее было обнаружено, что это относится и к интерферонам более далеких друг от друга видов, например человека и различных грызунов. Однако эффективность гетерологичных интерферонов сильно варьирует.
Степень защиты того или иного вируса определяется типом клеток, а не интерферона. Интерферон человека защищает клетки человека от вируса везикулярного стоматита лучше, чем от вируса леса Семлики, и такое же соотношение наблюдается при защите клеток человека интерфероном обезьяны. Напротив, клетки обезьяны получают большую защиту от второго из этих вирусов, чем от первого, независимо от того, какой из двух интерферонов к ним добавляют.
Интерферон - очень активный белок. Человеческий интерферон уже в концентрации 10-11 М препятствует размножению вируса везикулярного стоматита в фибробластах человека. Для сравнения напомним, что полипептидные гормоны, например инсулин, глюкагон и другие, физиологически активны в концентрациях от 5х10-10 до 1х10-8 М.
Даже без полной очистки интерферона можно продемонстрировать его гетерогенность. Интерфероны, продуцируемые клетками одного вида, например человека, могут защищать от вирусов клетки других, весьма отдаленных видов, например кролика. Стюарт и Десмайтер определили молекулярный вес интерферона человеческих лейкоцитов, защищавшего от вирусов клетки как человека, так и кролика. В неочищенных препаратах они обнаружили два вида активных молекул с мол. Весами около 21000 и 15000 соответственно. Активность меньше молекул в отношении клеток человека оказалась в 20 раз большей, чем в отношении клеток кролика, тогда как более крупные молекулы были в обоих случаях одинаково активны. Кроме того, интерферон с мол. Весом 15000 полностью инактивировался под действием В-меркаптоэтанола, который разрывает дисульфидные мостики, а активность интерферона с мол. Весом 21000 не изменялась. Таким образом многие клетки (если не большинство их) продуцируют два вида полипептидов, обладающих активностью интерферона. Индукция синтеза интерферона и индукция интерфероном “противовирусного” состояния клетки - два тесно связанных между собой, но, вероятно различных явления. Клетки, приобретающие устойчивость к вирусам, могут продуцировать интерферон. Однако за устойчивость клеток почти наверняка ответствен не сам интерферон, а какой-то другой белок, ибо от момента добавления интерферона до полного развития у них устойчивости к вирусам проходит много часов, и после этого клетки могут и не продуцировать обнаружимых количеств интерферона. Тем не менее добавление вируса к клеткам, защищенным с помощью интерферона, может привести к дополнительной выработке интерферона этими клетками.
Персистентные инфекции
Большинство упомянутых выше вирусных инфекций приводит к развитию соответствующих симптомов в течение нескольких дней или максимум двух-трех недель. Заболевания эти острые, т.е. начинаются они более или менее внезапно и длятся определенное, достаточно короткое время. Однако во многих других случаях вирусы весьма долго взаимодействуют с организмом животного или человека. Различают следующие формы таких инфекций:
латентные инфекции, при которых содержащийся в организме вирус лишь время от времени вызывает характерные поражения, вскоре исчезающие сами собой. Из пораженных участков можно выделить вирус, но потом он становится “латентным”, т.е. его уже выделить не удается.
хронические инфекции - длительно протекающие заболевания, при которых вирус присутствует постоянно. Симптомы могут полностью отсутствовать или же могут вызываться комплексами вирус-антитело либо взаимодействием противовирусных антител с зараженными клетками, вероятнее всего с их мембранами.
медленные инфекции - медленно прогрессирующие заразные заболевания с исключительно длинным латентным периодом.
Иммунные реакции
Наиболее специфическая реакция на вирусную инфекцию - это, конечно, выработка антител. Циркулирующие антитела, по-видимому, играют важную роль в предупреждении некоторых вирусных инфекций. Например, как после заболеваний, вызываемых многими вирусами, так и после вакцинации наблюдается длительный иммунитет и в сыворотке крови выявляются специфические антитела. Циркулирующие антитела при ряде вирусных инфекций, вероятно, служат барьером, препятствующим распространению вируса по всему организму. На это указывает тот факт, что при кори и свинке раннее введение глобулина блокирует дальнейшее развитие болезни. Вероятно, при естественно протекающих заболеваниях быстрое появление антител в крови может препятствовать распространению вируса из первичного очага инфекций. После инъекции кроликам вируса полиомиелита уже через 24 часа с помощью достаточно чувствительного метода в сыворотке можно обнаружить антитела к этому вирусу. Поэтому вполне возможно, что именно такие ранние антитела ответственны за тот факт, что у человека размножение этого вируса в глотке и кишечнике в большинстве случаев не ведет к его распространению по всему организму. Как полагают по той же причине немедленная вакцинация укушенного больным животным человека защищает его центральную нервную систему от поражения вирусом бешенства.
Опухолеродные вирусы
За годы, прошедшие с тех пор, как впервые был установлен факт возникновения вирусных сарком у кур, многочисленными исследователями у разных видов позвоночных были обнаружены онкогенные вирусы, принадлежащие к двум группам : ДНК - содержащие и ретровирусы. Среди онкогенных ДНК-вирусов есть паковавирусы, адековирусы и герпесвирусы. Из РНК-содержащих вирусов опухоли вызывают только ретровирусы.
Диапазон опухолей, вызываемых онкогенными вирусами, необычайно широк. Хотя вирус полиомы вызывает главным образом опухоли слюнных желез, уже само его название показывает, что он способен вызывать и многие другие опухоли. Ретровирусы вызывают главным образом лейкозы и саркомы, которые нередко бывают причиной опухолей молочной железы и ряда других органов. Хотя рак - это заболевание целого организма, аналогичное по сути явление, называемое трансформацией, наблюдается и в культурах клеток. Такие системы используются в качестве моделей для изучения онкогенных вирусов. Способность трансформировать клетки in vitro лежит в основе методов количественного определения многих онкогенных вирусов. Эти же системы используются и для сравнительного изучения физиологии нормальных и опухолевых клеток.
Индукция опухолей.
Реализация способности вируса вызывать образование опухолей зависит от многих факторов. Одним из критических факторов могут быть свойства самого вируса : например, избирательной способностью вызывать опухоли молочных желез обладает лишь один класс ретровирусов. Определяющим фактором могут быть и свойства клеток - мишеней, например наличие на их поверхности соответствующих неблокированных рецепторов или присутствие внутриклеточных ограничивающих факторов. Конечный результат может определяться и свойствами тканей, не содержащих клеток - мишеней для данного вируса. В качестве примера можно указать на способность организма - хозяина к иммунной реакции на данный вирус или зараженные им клетки. Чтобы заражение организма вирусом привело к возникновению опухоли, все факторы, имеющие отношение к этому процессу, в том числе физиологические и генетические, способные блокировать индукцию опухоли или ее развитие, должны быть представлены в пермиссивном варианте. Первым условием реализации вирусного онкогена является наличие в организме хозяина чувствительных к данному вирусу клеток. Когда речь идет о вирусах с узким кругом чувствительных клеток - мишеней (к числу таких относится, например, вирус лейкоза Френд, который специфически поражает только незрелые клетки мышей), следует иметь в виду, что наличие в организме чувствительных клеток может зависеть и от возраста или физиологического состояния.
Возможен и вариант, при котором в организме животного имеются клетки-мишени, однако рецепторы вирусов блокированы. Ситуация такого рода возникает, например, когда рецепторы, предназначенные для связывания с данным вирусом, блокированы вирусными глико-протеидами родственного ему эндогенного ретровируса, находящегося в клетке - мишени. Онкоген под влиянием унаследованного вируса не является простым результатом индукции латентного генома клетки - мишени. Более вероятно, что для этого соответствующий вирус должен попасть в клетку - мишень, распространяясь по организму из какого-то исходного пункта, где происходит индукция. Прямым свидетельством экзогенной инфекции клеток при наследственном лейкозе является факт увеличенного числа вирусных генов в опухолевых тканях. Иммунная система организма реагирует на опухолевые клетки лишь в том случае, если они имеют новые поверхностные антигены. Если животное предварительно иммунизировать клетками опухоли, индуцированной паповирусом, то другая опухоль, индуцированная тем же вирусом, у него при имплантации отторгается - свидетельство того, что данные вирусы вызывают на поверхности трансформированных ими клеток образование специфического опухолевого трансплантационного антигена. Этот антиген является вирус - специфическим. Так, вирус полиомы и SV 40 индуцируют различные трансплантационные антигены.
Ядерные полиэдрозы.
Ядерные полиэдрозы были описаны у чешуекрылых, перепончатокрылых и двукрылых. Типичным примером может служить полиэдроз тутового шелкопряда. Через несколько дней после инъекции гусенциале вируса или поедания ими инфицированного корма в ядрах клеток большинства тканей появляются мелкие включения. Постепенно их число и размеры увеличиваются и некоторые из них могут достигать 10-15 мкм. В одном ядре может содержаться до 100 полиэдров. Ядерный хроматин исчезает, клетки в концов гибнут, и свободные полиэдры появляются в гемолимфе. Полиэдры тутового шелкопряда представляют собой кристаллы, состоящие из белка с большим молекулярным весом (около 300 000), который состоит из субъединиц с молекулярным весом около 20 000. Белок полиэдров очень устойчив к действию протеолитических ферментов.
Белки полиэдрических включений, выделенных от различных насекомых, дают перекрестные серологические реакции, но между белками организма - хозяина и белками полиэдров серологического родства нет. Возможно, что белки полиэдров кодируются структурными генами вируса. Некоторые вирусы удавалось в эксперименте передавать другим насекомым - хозяевам, хотя частое наличие у насекомых латентных вирусов осложняет интерпретацию таких результатов. Белки полиэдров, образуемых данным вирусом у разных хозяев, серологически идентичны. Внутри полиэдров лежат вирусные частицы, расположенные поодиночке или группами. Подвергая полиэдры мягкому щелочному гидролизу, легко выделить содержащиеся в них вирионы. Они состоят в основном из палочкообразных капсидов, внутри которых находится двухцепочная ДНК, окруженная двумя мембранами - внутренней (это, вероятно, один слой белка, соответствующий капсиду) и внешней, окружающей скопления вирусных частиц и состоящей из белка и липидов.
Для ДНК каждого вируса насекомых характерен свой нуклеотидный состав. Количество ДНК в каждом вирионе составляет около 10 дальтон. Размеры вирионов у разных вирусов насекомых варьируются в пределах от 30 до 50 нм в поперечнике до 200-320 нм в длину. Наряду с такими крупными часто встречаются и мелкие частицы - не развивающиеся, а скорее неполные или распавшиеся вирионы.
Латентные инфекции.
Одна из удивительных особенностей вирусов насекомых - их способность сохраняться в организме хозяина в латентном состоянии в течение многих генераций. У насекомых почти наверняка имеет место трансовариальная передача вируса, хотя не исключается и возможность заражения личинок во время их выкормки. Находясь в латентном состоянии, вирус не вызывает каких-либо видимых симптомов. Однако он может быть активирован каким-либо внутренним или внешним фактором, что приводит к синтезу инфекционного вируса и появлению симптомов болезни. Такое действие может оказать тепловой шок или смена пищи, например замена листьев одной шелковицы листьями другой. Сходный эффект получали с помощью рентгеновских лучей и некоторых веществ. Так, Ямафудзи сообщил, что у тутового шелкопряда стимулами , провоцирующими симптомы полиэдроза, могут служить формальдегид, гидроксиламин, перекиси, оксины и нитриты. На основании этих данных Ямафудзи выдвинул теорию об образовании полиэдрических вирусов из генетического материала хозяина в результате мутагенного воздействия на хромосомную ДНК. Интересно, что к этой мысли он пришел тогда, когда мутагенные свойства многих из упомянутых веществ еще не были известны. Однако теория Ямафудзи не встретила большой поддержки, так как известно, что намеренное заражение гусениц тутового шелкопряда вирусом полиэдроза часто приводит не к заболеванию, а к латентной инфекции. Значит, гусеницы, у которых после химического воздействия проявляются вирусы, уже могли быть его скрытыми носителями. Поэтому “провирусная” теория латентности вирусов полиэдроза кажется более правдоподобной, чем теория образования вирусных геномов из генетических элементов клетки- хозяина.
Можно ли считать вирусы живыми ? Являются ли вирусы живыми ?
Согласно Львову, “организм - некая независимая единица интегрированных и взаимосвязанных структур и функций”. У простейших, то есть у одноклеточных именно клетка является независимой единицей, иными словами, организмом. И клеточные организмы - митохондрии, хромосомы и хлоропласты - это не организмы, ибо они не являются независимыми. Получается, что если следовать определению, данным Львовым, вирусы не являются организмами, так как не обладают независимостью: для выращивания и репликации генетического материала нужна живая клетка.
В то же время, у многоклеточных видов независимо от того, животные или растения, отдельные линии клеток не могут эволюционировать независимо друг от друга; следовательно, их клетки не являются организмами. Для того чтобы изменение было эволюционно значимым, оно должно быть передано новому поколению индивидуумов. В соответствии с этим рассуждением организм представляет собой элементарную единицу некоторого непрерывного ряда со своей индивидуальной эволюционной историей
Вирус обретает относительно независимую эволюционную историю благодаря его способности к адаптации в направлении, ведущим к приобретению им способности передаваться от хозяина к хозяину. Он может пережить клетку или организм, в которых паразитирует; фактически вирус часто “эксплуатирует” клетку. Один вирус может встречаться в разных видах, родах и типах и также один и тот же вирус может передаваться от растений насекомым и размножаться в клетках тех и других. Вирус, обладающий соответствующей приспособляемостью, может использовать разнообразные эволюционные ниши. Таким образом, вирус, конечно, обладает большей независимостью, чем любая клеточная органелла. То есть, в эволюционном плане вирус в большей степени организм, чем хромосома или даже клетка многоклеточного животного, хотя функционально он значительно менее независим, чем любая такая клетка.
И в то же время, можно рассматривать данную проблему с точки зрения другого определения: материал является живым если, будучи изолированным, он сохраняет свою специфическую конфигурацию так, что эта конфигурация может быть реинтегрирована, то есть вновь включена в цикл, в котором участвует генетическое вещество: это отождествляет жизнь с наличием независимого специфического самореплицирующегося способа организации. Специфическая последовательность оснований нуклеиновой кислоты того или иного гена может копироваться; ген - это некая часть запасов информации, которой располагает живой организм. В качестве теста на живое данное выше определение предлагает воспроизведение в различных клеточных линиях и в ряде поколей организмов. Вирус, согласно этому тесту, живой точно так же, как и любой другой фрагмент генетического материала, что его можно извлечь из клетки, вновь ввести в живую клетку и что при этом он будет копироваться в ней и станет хотя бы на некоторое время часть ее наследственного аппарата. При этом передача вирусного генома составляет основной смысл существования этих форм - результат их специализации в процессе отбора. Поэтому специализированность вирусов как переносчиков нуклеиновых кислот дает возможность считать вирусы “более живыми”, чем какие либо фрагменты генетического материала, и “более организмами”, чем любые клеточные органеллы, включая хромосомы и гены.
Строгие постулаты Коха
Каковы же те основные положения, сформулированные Робертом Кохом (1843-1910), которых должен придерживаться микробиолог при каждом обнаружении неизвестного возбудителя ? Что может служить доказательством, что именно он является причиной данного инфекционного заболевания ? Вот эти три критерия:
Неоднократное получение чистой культуры возбудителя, взятого из организма больного.
Возникновение точно такого же или сходного заболевания (как по характеру течения, так и по вызываемым им патологическим изменениям) при инфицировании здорового организма культурой предполагаемого возбудителя.
Появление в организме человека или животного после их заражения данным возбудителем всегда одних и тех же специфических защитных веществ. При контакте иммунной сыворотки крови с возбудителем из культуры последний должен терять свои патогенные свойства.
Для современной вирусологии характерно бурное развитие и широкое применение самых различных методик - как биологических (включая генетические), так и физико-химических.. Они используются при установлении новых, до сих пор еще неизвестных вирусов, и при изучении биологических свойств и строения уже обнаруженных видов.
Фундаментальные теоретические исследования дают обычно важные сведения, которые используются в медицине, в области диагностики или при глубоком анализе процессов вирусной инфекции. Введение новых действенных методов вирусологии связано, как правило, с выдающимися открытиями.
Так например, метод выращивания вирусов в развивающемся курином эмбрионе, впервые примененный А. М. Вудрофом и Е. Дж. Гудпэсчуром в 1931 году, был с исключительным успехом использован при изучении вируса гриппа.
Прогресс физико-химических методов, в частности метода центрифугирования, привел в 1935 году к возможности кристалмуации вируса табачной мозаики (ВТМ) из сока больных растений, а в последствии и к установлению входящих в его состав белков. Этим был дан первый толчок к изучению строения и биохимии вирусов.
В 1939 году А. В. Арден и Г. Руска впервые применили для изучения вирусов электронный микроскоп. Введение этого аппарата в практику означало исторический перелом в вирусологических исследованиях, поскольку появилась возможность увидеть - хотя в те годы еще и недостаточно четко - отдельные частицы вируса, вирионы.
В 1941 году Г.Херст установил, что вирус гриппа при известных условиях вызывает агглютинацию (склеивание и выпадение в осадок) красных кровяных телец (эритроцитов). Этим была положена основа для изучения взаимоотношений между поверхностными структурами вируса и эритроцитов, а также для разработки одного из наиболее эффективных методов диагностики.
Коренной перелом и вирусологических исследованиях произошел в 1949 г., когда Дж. Эндерсу, Т. Уэллеру и Ф. Роббинсу удалось размножить вирус полиомиелита в клетках кожи и мышц человеческого зародыша. Они добились разрастания кусочков ткани на искусственной питательной среде. Клеточные (тканевые) культуры были инфицированы вирусом полиомиелита, который до этого изучали исключительно на обезьянах и лишь очень редко на особом виде крыс.
Вирус в человеческих клетках, выращенных вне материнского организма, хорошо размножался и вызывал характерные патологические изменения. Метод культуры клеток (длительное сохранение и выращивание в искусственных питательных средах клеток, выделенных из организма человека и животных) был впоследствии усовершенствован и упрощен многими исследователями и стал, наконец, одним из наиболее важных и результативных для культивирования вирусов. Благодаря этому более доступному и дешевому методу появилась возможность получать вирусы в относительно чистом виде, чего нельзя было достичь в суспензиях из органов погибших животных. Введение нового метода означало несомненный прогресс не только в диагностике вирусных заболеваний, но и в получении прививочных вакцин. Он дал также неплохие результаты и в биологических и биохимических исследованиях вирусов.
В 1956 году удалось показать, что носителем инфекционности вируса является содержащаяся в нем нуклеиновая кислота. А в 1957 году А.Айзекс и Дж. Линдеман открыли интерферон, который позволил объяснить многие биологические явления, наблюдаемые в отношениях между вирусом и клеткой - хозяином или организмом - хозяином.
С. Бреннер и Д. Хорн ввели в технику электронной микроскопии метод негативного контрастного окрашивания, сделавший возможным изучение тонкого строения вирусов, в частности их структурных элементов (субъединиц).
В 1964 году уже упоминавшийся нами ранее американский вирусолог Гайдузек с сотрудниками доказал инфекционный характер ряда хронических заболеваний центральной нервной системы человека и животных. Он изучал недавно обнаруженные своеобразные вирусы, лишь в некоторых чертах схожие с ранее известными.
В то же время американский генетик Барух Бламберг обнаруживает (в процессе генетических исследований белков крови) антиген сывороточного гепатита (австралийский антиген), вещество, идентифицируемое при помощи серологических тестов. Этому антигену суждено было сыграть большую роль в вирусологических исследованиях гепатита.
В последние годы одним из крупнейших успехов вирусологии можно считать раскрытие некоторых молекулярно-биологических механизмов превращения нормальных клеток в опухолевые. Не меньшие успехи были достигнуты и в области изучения строения вирусов и их генетики.
Инфекционная единица
Наименьшее количество вируса, способное в данном опыте вызвать инфекцию, называется инфекционной единицей.
Для ее определения применяются обычно два метода. Первый основан на определении 50 %-ной летальной дозы, которая обозначается LD 50 (от лат. Letatis - смертельная, dosis - доза). Второй метод устанавливает число инфекционных единиц по числу бляшек, образовавшихся в культуре клеток.
Что, в сущности, представляет собой величина LD 50 и как она определяется? Исследуемый вирусный материал разводится в соответствии со снижающимися степенями концентрации, скажем кратными десяти: 1:10; 1:100; 1:1000 и т.д. Каждым из растворов с указанными концентрациями вируса инфицируют группу животных (десять индивидуумов) или культуру клеток в пробирках. Потом наблюдают гибель животных или изменения, происшедшие в культуре под влиянием вируса. Статистическим методом определяется степень концентрации, способная умертвить 50 % животных из числа зараженных исходным материалом. При использовании культуры клеток следует найти такую дозу вируса, которая производит губительное действие на 50 % инфицированных ею культур. В этом случае употребляется сокращение ЦПД 50 (цитопатическая доза). Иначе говоря, речь идет о такой дозе вируса, которая вызывает повреждение или гибель половины инфицированных ею культур.
Методом бляшек нельзя получить статистические данные, но можно установить фактическое число единиц вируса в материале, дающем бляшки в культуре клеток. В идеальном случае такая единица отвечает одной функционально полноценной частице.
Титрование
Индуцируемая вирусом реакция может происходить по типу “все или ничего” (то есть наличие или отсутствие инфекции), а может быть выражена количественно, например продолжительностью времени, необходимого проявления инфекции, или числом поражений в слое чувствительных клеток. Количественное определение вирусной активности называется титрованием. Титр исходной вирусной суспензии выражается числом инфекционных единиц, приходящихся на единицу объема. Инфекционные нуклеиновые кислоты, независимо от того выделены ли они из фагов или из вирусов животных или растений, как правило, обладают значительно меньшим инфекционным титром, чем исходный вирус (то есть отношение числа содержащихся в препарате молекул нуклеиновой кислоты к числу инфекционных единиц значительно больше, чем соответствующие величины для вирионов, из которых эти нуклеиновые кислоты были выделены). Однако и при титровании свободной нуклеиновой кислоты и при титровании вирионов вероятность нахождения в пробе среднего числа частиц выражается одной формулой. Отсюда следует, что вирусную инфекцию может вызвать также и одна молекула вирусной нуклеиновой кислоты. Как правило, инфекционными являются только интактные вирусные ДНК и РНК. Исключение наблюдается при множественном заражении клеток молекулами нуклеиновой кислоты, содержащими неполным геном вируса.
Резюмируя сказанное, можно прийти к выводу, что титр вирусной суспензии, выраженный числом инфекционных единиц, содержащихся в единице объема, как правило, соответствует числу вирионов (или числу молекул вирусной нуклеиновой кислоты), способных при условиях данного опыта вызвать инфекцию.
Утрата инфекционности
Как правило, чувствительность вирионов данного вируса к действию тех или иных инактивирующих веществ определяется специфическими свойствами его белков, вследствие чего методы инактивации инфекционности, разработанные для данного конкретного вируса, эффективны лишь в отношении близкородственных ему вирусов. Исключение составляет чувствительность вирусов к рентгеновским лучам, которая зависит от типа нуклеиновой кислоты вирионов и ее количества. В основе этой закономерности лежит тот факт, что действие рентгеновских лучей приводит к разрыву молекул нуклеиновой кислоты, и даже одного такого разрыва часто бывает достаточно для утраты инфекционного вируса. Результаты экспериментов показывают, что мелкие вирусы инактивируются рентгеновскими лучами значительно эффективнее, так как для них характерна большая величина отношения содержания в вирионе нуклеиновой кислоты к содержанию в нем белка, чем для крупных вирионов, более богатых белком.
Серологические методы
В целях определения вида данного вируса при изучении защитных процессов в организме больного человека или зараженного животного применяются серологические методы. Серология (от лат. Serum - сыворотка, жидкая составная часть крови) - это раздел иммунологии, изучающий реакции антигена специфическими защитными веществами, антителами, которые находятся в сыворотке крови. Антитела нейтрализуют действие вируса. Они связываются с определенными антигенными веществами, находящимися на поверхности вирусных частиц. В результате связывания молекул антител с поверхностной структурой вируса последний теряет свои патогенные свойства. Для установления уровня (количества) антител в сыворотке или определения типа данного вируса проводится реакция нейтрализации вируса . Ее можно проводить как на животных, так и на культуре клеток.
Минимальную концентрацию сыворотки, содержащей антитела, достаточную для того, чтобы нейтрализовать вирус, не дать ему проявить цитопатическое действие, называют титром сыворотки, нейтрализующей вирус. Эта концентрация может быть выявлена и с помощью метода бляшек.
Для обнаружения антител используется метод торможения гемагглютинации (склеивания эритроцитов под воздействием вируса) и метод связывания комплемента. Из методов, применяемых в вирусологии для различных исследовательских целей, можно еще упомянуть методы, при помощи которых вирусологический материал подготавливается для физических и химических анализов, которые облегчают изучение тонкого строения и состава вирусов. Эти анализы требуют большого количества совершенно чистого вируса. Очистка вируса - процесс, при котором из суспензии с вирусом устраняются все посторонние, загрязняющие ее частицы. В основном это кусочки и “обломки” клеток - хозяев. Одновременно с очисткой происходит обычно сгущение суспензии, повышение концентрации вируса. Так получается исходный материал для многих исследований.
Из отдельных методов очистки упомянем лишь наиболее эффективный - метод ультрацентрифугирования, который дает препараты вируса очень высокой концентрации.
Опишем вкратце процедуру получения и очистки вирусной суспензии. Процесс этот начинается с искусственного введения вируса в мозг подопытного животного. По прошествии нескольких дней вирус размножится в ткани мозга. При этом обнаружатся характерные нарушения функций нервной системы “хозяина”, и у животного выявятся признаки заболевания. Когда симптомы достигнут наибольшего развития, зверька умерщвляют, а его мозг, в тканях которого содержатся большие количества вируса, извлекают в стерильных условиях из черепа животного. Затем из мозга готовится, скажем ,10 %-ная суспензия. Кроме вирионов она содержит еще и большое количество кусочков нервной ткани, остатки кровеносных сосудов, кровяные тельца и другие биологические компоненты. Кусочки ткани и другие крупные частицы устраняются первым центрифугированием со скоростью 5000-10000 оборотов в минуту. Оно продолжается около получаса. Жидкость над осадком (суперкатакт) осторожно сливают в специальные пробирки для центрифугирования, сделанные из пластмассы или нержавеющей стали, поскольку стекло не выдерживает давление, которое развивается при высокоскоростном центрифугировании. А осадок обезвреживают дезинфицирующими средствами. Слитый “супернатант” обрабатывается затем уже в ультрацентрифуге.
Для седиментации мельчайших вирусов необходимо многочасовое ультрацентрифугирование, причем полученный осадок часто бывает не больше булавочной головки. Но и после такой обработки мы имеем не совсем чистый вирусный материал, в нем еще содержатся чужеродные примеси. Для тонких анализов этот осадок надо несколько раз обработать различными реактивами и повторить ультрацентрифугирование. Только тогда можно получить концентрированную суспензию вируса высокой чистоты, которая требуется для точных и достоверных биохимических, кристаллографических анализов или для наблюдений в электронно-оптических приборах.
В распоряжении вирусологов вообще много различных технических приспособлений, как , например , центрифугирование по градиентам концентрации, когда вирионы разделяются по степеням концентрации или по форме. Другой прибор, представляющий в наше время стандартное оборудование почти каждой научно-исследовательской вирусологической лаборатории - электронный микроскоп. Это дорогостоящий, большой и сложный аппарат.
Для получения изображения вирусов существует много различных методов, и все они прошли свои этапы развития. Чтобы обнаружить вирионы в клетках, в настоящее время пользуются методом ультратонких срезов Фиксированный материал, залитый эпоксидной смолой, разрезается тончайшим стеклянным или алмазным ножом. При помощи точных ультрамикротомов одну клетку можно разрезать более чем на тысячу тонких срезов. Полученные таким образом срезы обрабатываются затем специальными химикалиями, что обеспечивает лучшую их видимость.
Для наблюдения тонкого строения отдельных вирионов применяется метод негативного контрастирования (окрашивания), внедрение которого значительно повысило качественный уровень электронного микроскопирования. Вирусные частицы при этом осторожно смешиваются с раствором фосфовольфрамовой кислоты, дающей осадок, не пропускающий электронные лучи. В результате вирионы предстают в виде своих совершенно точных отпечатков, по которым можно изучать самые тонкие детали их поверхностей. При методе позитивного окрашивания (или “металлизирования” препарата) применяются такие вещества, которые способны выборочно прилипать к поверхности вирионов (например, специфические антитела, меченные ферритином, содержащим в своей молекуле железо и потому хорошо различимые в электронном микроскопе).
Дата: 2019-05-28, просмотров: 190.