Диски названы голографическими потому, что страницы бинарных данных записываются на них способом, схожим с записью голограмм. Причем, для хранения данных применяются не плоские голограммы, расположенные на поверхности фоточувствительного слоя оптического диска, а объемные, занимающие некоторую толщину фоточувствительного слоя диска. Заметьте, что речь не идёт о послойном хранении информации! Вся информация записана всего лишь в одном фоточувствительном слое диска!
Записанные на диск страницы не являются голограммами в полном смысле этого слова. На диске фиксируется информация не рассеянного светового фронта, излучаемого во все стороны изображением страницы данных, а уже плоская, необъёмная световая информация, сфокусированная линзой. Тем не менее, запись сфокусированной страницы происходит, как и запись голограмм, за счёт интерференции, что даёт право называть записанную информацию, скажем, объёмной голограммой плоского светового фронта.
Почему для хранения информации стали применяться объемные голограммы? Не проще ли было осуществить обычную оптическую запись, расположив данные на нескольких слоях оптического диска? Оказывается у объёмной голограммы есть важное преимущество — способность к мультиплексированию (которого, кстати, нет у обычных плоскостных голограмм). Мультиплексирование — это способность хранить несколько разных слепков данных практически в одном и том же объёме записывающего вещества.
Мультиплексирование достигается за счет изменения угла наклона прожигаемых поперёк объёмного фотослоя плоскостей, являющихся элементарными кирпичиками записываемой информации (т.н. брэгговских плоскостей). Этот способ позволяет достигать чрезвычайно высокой плотности записи, не увеличивая до нереальных величин точность считывающего и записывающего устройств. Для записи или считывания той или иной страницы данных достаточно изменить лишь угол подсветки голограммы.
Кроме мультиплексирования за счет изменения угла опорного луча существуют еще два теоретически простых способа:
1. За счёт изменения длины волны;
2. За счёт сдвига фазы опорного луча.
Однако все вышеописанные способы требуют сложных оптических систем и толстых, толщиной в несколько миллиметров, носителей. Это затрудняет их коммерческое применение, по крайней мере, в сфере обработки информации. Поэтому были разработаны ещё три метода мультиплексирования:
1. сдвиговое;
2. апертурное;
3. корреляционное.
Они основаны на использовании изменения положения носителя относительно световых пучков. При этом сдвиговое и апертурное мультиплексирование используют сферический опорный пучок, а корреляционное — пучок еще более сложной формы.
С целью еще более высокого уплотнения данных помимо мультиплексирования страниц применяется наложение книг. Суть наложения книг в том, что мультиплексированные массивы страниц (книги) записываются внахлёст друг на друга, как показано на рисунке ниже. Естественно, что с увеличением количества записанных страниц, и плотности наложения книг общая прозрачность голограммы падает. Поэтому степень плотности ограничивается способностью аппаратуры различать информацию на каждой отдельной странице.
Еще одним плюсом описываемой технологии является возможность удерживать точность оборудования на приемлемом для массового изготовления уровне. Страницы информации после их формирования уменьшаются чисто оптическим способом — всего лишь с помощью линзы, а при восстановлении подобной же линзой увеличиваются до размера считывающего устройства.
Кроме того, голографический способ хранения позволяет значительно повысить скорость доступа к ней, поскольку обращение для чтения или записи происходит единовременно ко всей странице данных, а каждая такая страница может содержать до миллиона бит и более.
Дата: 2019-04-23, просмотров: 217.