Информатизация общества. Основные этапы развития вычислительной техники
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Деятельность человека всегда связана с процессами получения, преобразования, накопления и передачи информации.

Важнейшим историческим этапом в развитии процесса обмена информацией, знаниями в человеческом обществе стало создание письменности. Язык и информация, отражаемая им, получил и материальную основу. Сначала это были камень, глина и дерево, затем папирус и, наконец, бумага. С изобретением письменности (около 5 тысяч лет назад) человечество получило возможность обмениваться информацией не только при непосредственном общении людей, но и записывать ее, хранить я передавать следующим поколениям.

Настоящей информационной революцией стало изобретение книгопечатания. Печатный станок, созданный И.Гутенбергом в Германии в 1440 году, открыл новую эру в обмене информацией между людьми. Знания, информация стали широко тиражируемыми, доступными многим людям. Это послужило мощным стимулом для увеличения грамотности населения, развития образования, науки, производства.

В результате научно-технического прогресса человечество создавало все новые средства и способы сбора, хранения, передачи информации. Но важнейшее в информационных процессах — обработка, целенаправленное преобразование информации осуществлялось до недавнего времени исключительно человеком.

Однако постоянное совершенствование техники, производства привело к резкому возрастанию информации, с которой приходится оперировать человеку в процессе его профессиональной деятельности. Например, современный авиадиспетчер должен каждую секунду знать положение многих самолетов, метеорологические условия, состояние взлетно-посадочных полос и оперативно принимать необходимые решения.

Развитие науки, образования обусловило быстрый рост объема информации, знаний человека. Если в начале прошлого века общая сумма человеческих знаний удваивалась приблизительно каждые пятьдесят лет, то в последующие годы — каждые пять лет.

Все это привело к тому, что человечество уже не справлялось с обработкой нарастающих объемов информации старыми методами и средствами.

Выходом из создавшейся ситуации стала автоматизация процессов обработки информации. Точнее — избавление человека от многих трудоемких, но не требующих творческого подхода видов деятельности, связанных с обработкой информации.

Первые попытки создания средств, инструментов для обработки информации связаны со стремлением упростить выполнение действий над числами. В Древнем Китае (около 4 тысяч лет назад) были изобретены счеты. Греки и римляне более двух тысячелетий назад начали использовать «абак» — счетную доску, на которой числа изображались определенным количеством камешков, а действия над числами — передвижением этих камешков.

В 1642 году известный французский физик и математик Б. Паскаль изобрел арифмометр — устройство для сложения и вычитания чисел, а двадцать лет спустя немецкий математик Г. Лейбниц сконструировал арифмометр, выполнявший все четыре арифметических действия.

Арифмометры несколько столетий верно служили людям, являясь незаменимым помощником человека в бухгалтерском учете, проведении научных расчетов и других областях его деятельности. Однако возможности арифмометров были ограничены — скорость вычислений на них была невелика, «память» арифмометра могла хранить лишь результат очередной арифметической операции.

В конце прошлого века в США проводилась первая перепись населения. В преддверии этой работы, связанной с учетом и обобщением огромного количества данных о многомиллионном населении, американский инженер Г. Холлерит сконструировал электромеханическое вычислительное устройство — табулятор. Табулятор в несколько раз превосходил арифмометр по скорости вычислений, имел память на перфокартах — картонных картах, на которых пробивались (перфорировались) специальные отверстия. Определенная система отверстий изображала число. Табуляторы нашли широкое применение и были предшественниками вычислительных машин нашего времени.

Первая электронная вычислительная машина «ЭНИАК» была создана в США в 1946 году. В нашей стране первая ЭВМ «МЭСМ-1» была разработана в 1951 году под руководством академика В. А. Лебедева.

Первые компьютеры были дорогостоящими, громоздкими устройствами, требующими для эксплуатации больших, специально оборудованных помещений. Их обслуживали десятки программистов и инженеров. Средства «общения» человека с машиной были весьма ограничены — все данные, вводимые в ЭВМ, набивались на перфокарты. Машинные языки были сложны, и ими владели лишь профессиональные программисты. «Машинное время» (т.е. время работы на ЭВМ) стоило дорого. В 50—60-е годы ЭВМ создавались для ускорения и автоматизации вычислительной работы. Область их применения ограничивалась, как правило, выполнением огромного объема однообразной вычислительной работы. Это имеет место, например, при вычислениях траектории движения спутников или начислениях зарплаты на большом предприятии.

Ситуация с использованием вычислительной техники стала принципиально меняться в 70-х годах. Во-первых, благодаря разработке новой технологии удалось в сотни раз уменьшить размеры и стоимость электронных элементов ЭВМ. Компьютер стал помещаться на письменном столе и предназначаться для использования одним человеком. Такие компьютеры получили наименование «персональных ЭВМ». Во-вторых, изменились средства общения человека с компьютером. Теперь человек может обращаться к ЭВМ с помощью клавиатуры (подобной клавиатуре пишущей машинки), а машина вести диалог с человеком и выдавать решения поставленных задач в виде текста или рисунков на телевизионном экране. В-третьих, получили дальнейшее развитие языки общения с компьютером.

В настоящее время они все более приближаются к естественному языку человека и поэтому овладение ими стало доступно каждому человеку за достаточно небольшое время. Кроме того, профессиональными программистами создано большое количество прикладных программ для решения на компьютерах типовых задач, часто встречающихся во многих областях деятельности человека. Наборы таких прикладных программ для типовых задач по какой-либо отрасли позволяют воспользоваться компьютером для их решения специалисту, не владеющему программированием. В-четвертых, значительно расширилась сфера применения компьютеров. Если в первые годы своего существования ЭВМ использовались в основном для вычислений, то в настоящее время компьютеры широко применяются для обработки не только числовой, но и других видов информации.

Каждый этап развития компьютеров определялся совокупностью элементов, из которых строились компьютеры, — элементной базой, а также уровнем развития их программного обеспечения.

С изменением элементной базы ЭВМ значительно изменялись характеристики, внешний вид и возможности компьютеров. Каждые 10—12 лет происходил резкий скачок в конструкции и способах производства ЭВМ.

Именно поэтому принято говорить о поколениях ЭВМ, сменявших друг друга в ходе развития вычислительной техники.

Естественно, что смена поколений заключалась не только в обновлении элементной базы. С каждым новым поколением в практику применения ЭВМ входили новые способы решения задач и новые компоненты программного обеспечения.

В ЭВМ первого поколения элементы электронных схем изготовлялись на базе вакуумных электронных ламп. Машины первого поколения занимали громадные залы, весили сотни тонн и расходовали сотни киловатт электроэнергии.

Появление ЭВМ второго поколения стало возможным благодаря изобретению транзисторов. Резкое уменьшение размеров транзисторов по сравнению с радиолампами позволило делать блоки ЭВМ в виде так называемых печатных плат. Использование транзисторов и печатных плат позволило значительно уменьшить размеры ЭВМ и потребление энергии.

Основу ЭВМ третьего поколения составляют так называемые интегральные схемы. Благодаря изобретению интегральных схем резко повысился уровень надежности электронных схем при значительном падении их стоимости благодаря уменьшению размеров и автоматизации их проектирования и производства. В ЭВМ третьего поколения применялись интегральные схемы, содержащие более тысячи элементов на одном кристалле.

ЭВМ четвертого поколения используют большие интегральные схемы (БИС), в которых количество элементов на кристалле кремния равно десяткам тысяч. Процессор ЭВМ стал целиком размещаться на одном кристалле кремния. Такие процессоры получили название микропроцессоров. В результате на одной плате оказалось возможным разместить электронные схемы всех устройств ЭВМ, а саму ЭВМ, которая еще двадцать лет назад занимала большой зал, сделать по габаритам и по стоимости доступной для индивидуального применения на рабочем месте пользователя. Так появились персональные ЭВМ.

Сегодня информатика и вычислительная техника проникли во многие сферы деятельности человека, завтра станут неотъемлемой частью практически всех профессий, прочно войдут в наш быт, образование, культуру. Именно поэтому знание информатики, умение использовать компьютер становится компонентом общего образования человека в современном обществе, а компьютерная грамотность — второй грамотностью человека.

Билет № 20

Услуги компьютерных сетей.

Основной услугой компьютерных сетей является электронная почта. Этот режим работы компьютерных сетей назван так, потому что обеспечивает доставку электронных писем от одного абонента к другому. Электронное письмо— обычный текстовый файл, снабженный несколькими служебными строками (конвертом). Электронная почта позволяет пересылать не только тексты, но при необходимости программы, картинки и другую информацию. Электронная почта — быстрый и достаточно дешевый вид связи. В любую точку мира электронное письмо идет, как правило, не более 4 часов.

Для каждого абонента сети на одном из компьютеров выделяется область памяти, так называемый электронный почтовый ящик. Все письма, поступающие на определенный почтовый адрес, записываются в соответствующий почтовый ящик. Чтобы использовать этот почтовый ящик (получать из него информацию), абонент должен передать на сетевой компьютер свой почтовый адрес и определенный пароль, обеспечивающий доступ к информации только тому пользователю, который знает этот пароль.

Для того чтобы электронное письмо дошло до адресата, необходимо, чтобы оно было оформлено в соответствии с международным стандартом и имело почтовый электронный адрес.

Почтовый электронный адрес может иметь разные форматы. Наиболее широко распространена схема формирования адреса, используемая, например, в сети Internet.

По аналогии с адресом, который мы указываем на конверте обычного письма, электронный адрес содержит два основных компонента:

идентификатор абонента (аналогично строке КОМУ: на почтовом конверте);

координаты абонента, указывающие его местонахождение (аналогично строке КУДА: дом, улица, город, страна).

Для того чтобы отделить идентификатор абонента от его почтовых координат, используется значок @. Например: kuz@tit-bit.msk.ru

В рассматриваемом примере kuz — идентификатор абонента, отражающий обычно начальные буквы его фамилии или имени. Далее справа от знака @ указываются почтовые координаты абонента, которые описывают его местонахождение. Эти координаты называют доменом. Составные части домена разделяются точками. Крайне правая часть домена, как правило, обозначает код страны адресата. Код страны определяется международным стандартом ISO. В нашем случае ru — код России.

Следующая часть домена — msk — указывает код города — Москвы.

Наконец, третья часть домена обозначает имя машины (tit-bit), которой пользуется данный абонент.

Использование компьютерных телекоммуникаций дает возможность не просто передавать сообщения абонентам сети, но еще и записывать, хранить и читать информацию, ранее оставленную там другим абонентом. Эти возможности привели к появлению так называемых электронных досок объявлений (ЭДО). Они получили такое название по аналогии их функций с обычными «досками объявлений» на стене школы, учреждения, в журнале или газете.

Для организации электронной доски объявлений используется мощный компьютер с большим объемом дисковой и оперативной памяти. Б ней хранятся сообщения, полученные от пользовате-

лей данной электронной доски объявлений. К этому компьютеру подключается несколько отдельных телефонных каналов, что дает возможность использования электронной доски объявлений одновременно большим числом пользователей.

Абонент, обращающийся к ЭДО, входит в систему меню, предлагаемую ЭДО. Он может просмотреть меню, выбрать интересующий его раздел, переписать информацию из ЭДО в свой компьютер, передать информацию из своего компьютера в ЭДО или оставить сообщение для конкретного абонента.

Дальнейшее развитие идеи электронного обмена информацией — это телеконференции.

Телеконференция — обмен электронными сообщениями между абонентами по определенной тематике. Сообщение, посвященное определенной теме, попадает ко всем абонентам, подключенным к данной конференции. Существует огромное количество телеконференций, посвященных совершенно разнообразным темам: образованию, музыке, искусству, программированию, бизнесу и т. д.

Телеконференции по своей организации и функционированию во многом близки к ЭДО. но имеют и отличие.

Используя режим телеконференций, абонент может непосредственно не обращаться на ЭДО. Ему необходимо заранее подготовить сообщение, которое он хотел бы поместить в тот или иной раздел, и указать, содержимое каких разделов его интересует. Связавшись с сервером сети, абонент передает все функции организации работы компьютеру. Компьютер передаст все сообщения, предназначенные для отправки, и получит все содержимое из разделов, которые были выбраны абонентом.

Благодаря совмещению технологий баз данных и компьютерных телекоммуникаций стало возможным использовать так называемые распределенные базы данных. Огромные массивы информации, накопленные человечеством, распределены по различным регионам, странам, городам, где хранятся в библиотеках, архивах, информационных центрах.

Обычно все крупные библиотеки, музеи, архивы и другие подобные организации имеют свои компьютерные базы данных, в которых сосредоточена хранимая в этих учреждениях информация. Компьютерные сети позволяют осуществить доступ к любой базе данных, которая подключена к сети. Это избавляет пользователей сети от необходимости держать у себя гигантскую библиотеку и дает возможность существенно повысить эффективность работы по поиску необходимой информации.

Если вы являетесь пользователем компьютерной сети, то можете сделать запрос в соответствующие базы данных и получить по сети электронную копию необходимой книги, статьи, архивного материала, увидеть, какие картины и другие экспонаты находятся в данном музее и т. д. Вы можете также послать свою информацию в любую базу данных.

Дата: 2019-05-28, просмотров: 187.