Механизмы управления движением
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Двигательная активность человека имеет очень широкий диапазон - от мышечных координаций, требуемых для грубой ручной работы или перемещения всего тела в пространстве, до тонких движений пальцев при операциях, которые выполняются под микроскопом. Обеспечение всех видов двигательной активности осуществляется на основе движения двух потоков информации. Один поток берет начало на периферии: в чувствительных элементах (рецепторах), которые находятся в мышцах, суставных сумках, сухожильных органах. Через задние рога спинного мозга эти сигналы поступают вверх по спинному мозгу и далее в разные отделы головного мозга.

Взятые в совокупности сигналы от перечисленных структур образуют особый вид чувствительности — проприорецепцию. Хотя в сознании человека эта информация не отражается, благодаря ей мозг в каждый текущий момент времени имеет полное представление о том, в каком состоянии находятся все его многочисленные мышцы и суставы. Эта информация формируют схему, или образ, тела. Не имея такого интегрального образования, человек не мог бы планировать и осуществлять ни одно движение. Схема тела — исходное основание для реализации любой двигательной программы. Ее планирование, построение и исполнение связано с деятельностью двигательной системы.

В двигательной системе основной поток информации направлен от двигательной зоны коры больших полушарий — главного центра произвольного управления движениями — к периферии, т.е. к мышцам и другими органам опорно-двигательного аппарата, которые и осуществляют движение.

Структуры, отвечающие за нервную регуляцию положения тела в пространстве и движений, находятся в разных отделах ЦНС — от спинного мозга до коры больших полушарий. В их расположении прослеживается четкая иерархия, отражающая постепенное совершенствование двигательных функций в процессе эволюции.

Строение двигательной системы

http://ido.rudn.ru/psychology/psychophysiology/10.html - p1Существуют два основных вида двигательных функций: поддержание положения (позы) и собственно движение. В повседневной двигательной активности разделить их достаточно сложно. Движения без одновременного удержания позы столь же невозможны, как удержание позы без движения. (см. рис.)

Структуры, отвечающие за нервную регуляцию позы и движений, находятся в разных отделах ЦНС — от спинного мозга до коры больших полушарий. В их расположении прослеживается четкая иерархия, отражающая постепенное совершенствование двигательных функций в процессе эволюции.

Самый низший уровень в организации движения связан с двигательными системами спинного мозга. В спинном мозге между чувствительными нейронами и мотонейронами, которые прямо управляют мышцами, располагаются вставочные нейроны, образующие множество контактов с другими нервными клетками. От возбуждения вставочных нейронов зависит, будет ли то или иное движение облегчено или заторможено. Нейронные цепи, или рефлекторные дуги, лежащие в основе спинальных рефлексов, — это анатомические образования, обеспечивающие простейшие двигательные функции. Однако их деятельность в значительной степени зависит от регулирующих влияний выше расположенных центров.

Высшие двигательные центры находятся в головном мозге и обеспечивают построение и регуляцию движений. Двигательные акты, направленные на поддержание позы, и их координация с целенаправленными движениями осуществляется в основном структурами ствола мозга, в то же время сами целенаправленные движения требуют участия высших нервных центров. Побуждение к действию, связанное с возбуждением подкорковых мотивационных центров и ассоциативных зон коры, формирует программу действия. Образование этой программы осуществляется с участием базальных ганглиев и мозжечка, действующих на двигательную кору через ядра таламуса (см. Видео). Причем мозжечок играет первостепенную роль в регуляции позы и движений, а базальные ганглии представляют собой связующее звено между ассоциативными и двигательными областями коры больших полушарий.

http://ido.rudn.ru/psychology/psychophysiology/10.html - p3Моторная, или двигательная, кора расположена непосредственно кпереди от центральной борозды. В этой зоне мышцы тела представлены топографически, т.е. каждой мышце соответствует свой участок области. Причем мышцы левой половины тела представлены в правом полушарии, и наоборот.

http://ido.rudn.ru/psychology/psychophysiology/10.html - p4Двигательные пути, идущие от головного мозга к спинному, делятся на две системы: пирамидную и экстрапирамидную. Начинаясь в моторной и сенсомотрной зонах коры больших полушарий, большая часть волокон пирамидного тракта направляется прямо к эфферентным нейронам в передних рогах спинного мозга. Экстрапирамидный тракт, также идущий к передним рогам спинного мозга, передает им эфферентную импульсацию, обработанную в комплексе подкорковых структур (базальных ганглиях, таламусе, мозжечке).

 

Двигательный анализатор

 

Двигательный анализатор, совокупность чувствительных нервных образований, воспринимающих, анализирующих и синтезирующих импульсы, идущие от мышечно-суставного аппарата. Термин введён И. П. Павловым. Д. а., как и другие анализаторы, состоит из цепи нервных клеток, начинающейся с рецепторов сухожилий, суставов и др. проприорецепторов и кончающейся группами нервных клеток в коре больших полушарий головного мозга. От проприорецепторов импульсы идут к первым нейронам Д. а., находящимся в межпозвонковых нервных узлах, далее — в спинной мозг и по его задним столбам — в продолговатый мозг, где расположены вторые нейроны Д. а. Волокна, выходящие из ядер продолговатого мозга, переходят на противоположную сторону, образуя перекрест, подымаются к зрительным буграм, где расположены третьи нейроны, и достигают коры головного мозга. Помимо этого пути, сигналы от опорно-двигательного аппарата могут достигать коры головного мозга и через ретикулярную формацию и мозжечок. Д. а. принадлежит ведущая роль в формировании и проявлении движений, он играет существенную роль в высшей нервной деятельности.

Анализатор человека — подсистема центральной нервной системы, обеспечивающая приём и первичный анализ информации. Периферийная часть анализатора — рецептор, центральная часть анализатора — мозг.

Проприорецепторы (собственный, особенный, своеобразный и receptor — укрыватель) — концевые образования чувствительных нервных волокон в скелетных мышцах, связках, суставных сумках; раздражаются при сокращении, напряжении или растягивании мышц; воспринимают информацию о положении тел в пространстве, обеспечивают кинестетические ощущения.

Ретикулярная формация, сетевидное образование, совокупность нервных структур, расположенных в центральных отделах стволовой части мозга (продолговатом и среднем мозге, зрительных буграх).

Мозжечок, отдел головного мозга позвоночных животных и человека, участвующий в координации движений и сохранении позы, тонуса и равновесия тела; функционально связан также с регуляцией вегетативной, сенсорной, адаптационно-трофической и условнорефлекторной деятельности организма.

 



Зрительная система

 

Зрительная система дает мозгу более 90% сенсорной информации. Зрение — многозвеньевой процесс, начинающийся с проекции изображения на сетчатку уникального периферического оптического прибора — глаза. Затем происходят возбуждение фоторецепторов, передача и преобразование зрительной информации в нейронных слоях зрительной системы, а заканчивается зрительное восприятие принятием высшими корковыми отделами этой системы решения о зрительном образе.

Глазное яблоко имеет шарообразную форму, что облегчает его повороты для наведения на рассматриваемый объект. На пути к светочувствительной оболочке глаза (сетчатке) лучи света проходят через несколько прозрачных сред — роговицу, хрусталик и стекловидное тело. Определенная кривизна и показатель преломления роговицы и в меньшей мере хрусталика определяют преломление световых лучей внутри глаза.

Преломляющую силу любой оптической системы выражают в диоптриях (D). На сетчатке получается изображение, резко уменьшенное и перевернутое вверх ногами и справа налево.

Аккомодация - приспособление глаза к ясному видению объектов, удаленных на разное расстояние.

Зрачок и зрачковый рефлекс. Зрачком - отверстие в центре радужной оболочки, через которое лучи света проходят внутрь глаза. Зрачок повышает четкость изображения на сетчатке, увеличивая глубину резкости глаза. Пропускает только центральные лучи.

В радужной оболочке имеется два вида мышечных волокон, окружающих зрачок: кольцевые, радиальные. Сокращение первых вызывает сужение, сокращение вторых — расширение зрачка. Зрачки расширяются во время боли, при эмоциях, усиливающих возбуждение симпатической системы (страх, ярость). Расширение зрачков — важный симптом ряда патологических состояний, например болевого шока, гипоксии.

У здоровых людей размеры зрачков обоих глаз одинаковые. При освещении одного глаза зрачок другого тоже суживается; такая реакция называется содружественной. В некоторых патологических случаях размеры зрачков обоих глаз различны. Структура и функции сетчатки. Сетчатка представляет собой внутреннюю светочувствительную оболочку глаза. Она имеет сложную многослойную структуру.

Два вида вторично-чувствующих, фоторецепторов (палочковые и колбочковые) и несколько видов нервных клеток. Возбуждение фоторецепторов активирует первую нервную клетку сетчатки (биполярный нейрон). Возбуждение биполярных нейронов активирует ганглиозные клетки сетчатки, передающие свои импульсные сигналы в подкорковые зрительные центры. В процессах передачи и переработки информации в сетчатке участвуют также горизонтальные и амакриновые клетки. Все перечисленные нейроны сетчатки с их отростками образуют нервный аппарат глаза, который не только передает информацию в зрительные центры мозга, но и участвует в ее анализе и переработке. Поэтому сетчатку называют частью мозга, вынесенной на периферию.

Место выхода зрительного нерва из глазного яблока — диск зрительного нерва, называют слепым пятном. Оно не содержит фоторецепторов и поэтому нечувствительно к свету. Мы не ощущаем наличия «дыры» в сетчатке.

Структура и функции слоев сетчатки.

Пигментный слой. Образован одним рядом эпителиальных клеток.

Фоторецепторы. К пигментному слою изнутри примыкает слой фоторецепторов: палочек и колбочек. В сетчатке каждого глаза человека находится 6—7 млн колбочек и 110—123 млн палочек. Распределены в сетчатке неравномерно. Колбочки обеспечивают дневное и цветовое зрение; палочки ответственны за сумеречное зрение.

Остротой зрения называется максимальная способность глаза различать отдельные детали объектов.

Оценка расстояния. Восприятие глубины пространства и оценка расстояния до объекта возможны как при зрении одним глазом (монокулярное зрение), так и двумя глазами (бинокулярное зрение). Во втором случае оценка расстояния гораздо точнее.

Бинокулярное зрение. При взгляде на какой-либо предмет у человека с нормальным зрением не возникает ощущения двух предметов, хотя и имеется два изображения на двух сетчатках.

Величина предмета оценивается как функция величины изображения на сетчатке и расстояния предмета от глаза.

Восприятие предметов внешнего мира осуществляется глазом путем анализа изображений этих предметов на сетчатке. В функциональном отношении глаз можно разделить на два отдела: светопроводящий - роговица, влага передней камеры, хрусталик, стекловидное тело и световоспринимающий - сетчатка.    

Основная функция зрения состоит в различении яркости, цвета, формы, размеров наблюдаемых объектов. Наряду с другими анализаторами зрение играет большую роль в регуляции положения тела и в определении расстояния до объекта.

К вспомогательным образованиям глаза относятся веки с ресницами,

слезная железа, с помощью которой осуществляется увлажнение поверхности

глаза и удаление инородных мелких частиц, а также мышцы, прикрепляющиеся к

наружной поверхности глазного яблока, обеспечивающие его движение.

29. Психофизиология сна.

Сон - это один из видов торможения, которое охватывает кору головного мозга и нижележащие его отделы. Всякий раз, когда нервным клеткам угрожает истощение или перевозбуждение, в них развивается так называемое охранительное торможение, то есть защитная реакция коры на внешние раздражители.

Изучение торможения коры головного мозга показало, что оно не просто препятствует дальнейшей работе нервных клеток. Во время этого внешне пассивного состояния клетки, совершаются активные процессы обмена веществ, клетки мозга восстанавливают нормальный состав, набирают силы для дальнейшей активной работы. Во сне, когда заторможена подавляющая масса мозга, создаются наиболее благоприятные условия не только для восстановления работоспособности нервных клеток мозга, более всего нуждающихся в такой передышке, но и для отдыха всего организма.

Теории сна:

1) энергетический, или компенсаторно-восстановительный

2) информационный

3) психодинамический

Согласно "энергетическим" теория во время сна происходит восстановление энергии, затраченной во время бодрствования. Особенная роль при этом отводится, так называемому, дельта-сну, увеличение продолжительности которого следует за физическим и умственным напряжением. Любая нагрузка компенсируется увеличением доли дельта-сна. Именно на стадии дельта-сна происходит секреция нейрогормонов, обладающих анаболическим действием.

При длительном бодрствовании уровень жизненной активности клеток коры мозга снижается. Сон это результат уменьшения сенсорного потока. Уменьшение информации влечет за собой включение тормозных структур. Нуждаются в отдыхе не клетки, не ткани, не органы, а психические функции: восприятие, сознание, память. Воспринимаемая информация может «переполнить» мозг, поэтому ему необходимо отключиться от окружающего мира (что и является сущностью сна) и перейти на иной режим работы.

Сон прерывается, когда информация записана, и организм готов к новым впечатлениям.

Восстановление в самом широком значении этого слова - это не покой и пассивное накопление ресурсов, вернее не только покой, которого во сне достаточно, но, прежде всего, своеобразная мозговая деятельность, направленная на реорганизацию воспринятой информации. После такой реорганизации и возникает ощущение отдыха, физического и умственного.

Согласно "психодинамическим" теориям сна, кора мозга оказывает тормозное влияние сама на себя и на подкорковые структуры.

К психодинамическим теориям можно отнести гомеостатическую теорию сна. Под гомеостазом в этом случае понимается весь комплекс процессов и состояний, на котором основана оптимальная работа мозга. Согласно его теории, существует два типа бодрствования - спокойное и напряженное.

Во время быстрого сна работает одна лимбическая система: эмоции взбудоражены, а координированные реакции парализованы. Если судить по активности мозговых структур, то быстрый сон - аналог не спокойного, а напряженного бодрствования.

Также можно отметить, что сон относиться к одному из видов циклических ритмов деятельности человеческого мозга. Цикличность лежит в основе нашего существования упорядоченного ритмичной сменой дня и ночи, времен года, работы и отдыха. На уровне организма цикличность представлена биологическими ритмами, в первую очередь, так называемыми циркадными ритмами, обусловленными вращением Земли вокруг своей оси.

Сон – монофазный (разделение дня и ночи). Смена сна и бодрствования несколько раз в сутки - сон полифазный.

Стадии сна

Сон человека имеет правильную циклическую организацию. В течение сна различают пять стадий. Четыре стадии медленноволнового сна и одна стадия быстрого. Иногда говорят, что сон состоит из двух фаз: медленной и быстрой. Завершенным циклом считается отрезок сна, в котором происходит последовательная смена стадий медленноволнового сна быстрым сном. В среднем отмечается 4 - 6 таких циклов за ночь, продолжительностью примерно 1,5 часа каждый.

1. Переходная: от состояния бодрствования ко сну, что сопровождается уменьшением альфа-активности и появлением низкоамплитудных медленных тета- и дельта-волн. Длительность обычно не больше 10-15 мин. В поведении эта стадия соответствует периоду дремоты с полусонными мечтаниями, она может быть связана с рождением интуитивных идей, способствующих успешности решения той или иной проблемы.

2. Вторая стадия занимает чуть меньше половины всего времени ночного сна. Эта стадия получила название стадии "сонных веретен", т.к. наиболее яркой ее чертой является наличие в ЭЭГ веретенообразной ритмической активности с частотой колебания 12-16 Гц.

3. Третья стадия характеризуется всеми чертами второй стадии, к которым добавляется наличие в ЭЭГ медленных дельта колебаний с частотой 2 Гц и менее, занимающих от 20 до 50% эпохи записи. Этот переходный период длится всего несколько минут.

4. Преобладание в ЭЭГ медленных дельта колебаний с частотой 2 Гц и менее, занимающих более 50% времени записи ночного сна. Третья и четвертые стадии обычно объединяют под названием дельта-сна. Глубокие стадии дельта-сна более выражены в начале и постепенно уменьшаются к концу сна. В этой стадии разбудить человека достаточно трудно. Именно в это время возникают около 80% сновидений, и именно в этой стадии возможны приступы лунатизма и ночные кошмары, однако человек почти ничего из этого не помнит. Первые четыре стадии сна в норме занимают 75-80% всего периода сна.

5. Пятая стадия сна имеет ряд названий: стадия "быстрых движений глаз" или сокращенно БДГ, "быстрый сон", "парадоксальный сон". Во время этой стадии человек находится в полной неподвижности вследствие резкого падения мышечного тонуса, и лишь глазные яблоки под сомкнутыми веками совершают быстрые движения с частотой 60-70 раз в секунду. Количество таких движений может колебаться от 5 до 50. Причем была обнаружена отчетливая связь между быстрыми движениями глаз и сновидениями. Так, у здоровых людей этих движений больше, чем у больных с нарушением сна. Характерно, что слепым от рождения людям снятся только звуки и ощущения. Глаза их при этом неподвижны.

Кроме того, на этой стадии сна энцефалограмма приобретает признаки, характерные для состояния бодрствования. Название «парадоксальная» возникло из-за видимого несоответствия между состоянием тела (полный покой) и активностью мозга. Если в это время разбудить спящего, то приблизительно в 90% случаев можно услышать рассказ о ярком сновидении, причем точность деталей будет существенно выше, чем при пробуждении из медленного сна

Эта витальная потребность зависит от возраста. Общая продолжительность сна новорожденных составляет 20-23 часа в сутки. Взрослые спят в среднем 7-8 часов в сутки.

Лишенный сна человек погибает в течение двух недель.

Лишение сна в течение 3-5 суток вызывает непреодолимую потребность во сне. В результате 60-80 часового отсутствия сна у человека наблюдается снижение скорости психических реакций, портится настроение, происходит дезориентация в окружающей среде, резко снижается работоспособность, возникает быстрая утомляемость при умственной работе. Человек теряет способность к сосредоточенному вниманию, могут возникнуть различные нарушения мелкой моторики, возможны и галлюцинации, иногда наблюдаются внезапная потеря памяти и сбивчивость речи. При более длительном лишении сна могут возникнуть психопатии и другие расстройства психики.

В целом можно заключить, что главной функцией медленного сна является восстановление гомеостаза мозговой ткани и оптимизация управления внутренними органами. Хорошо известно так же, что сон необходим для восстановления физических сил и оптимального психического состояния. Что касается парадоксального сна, то считается, что он облегчает перевод информации из кратковременной памяти в долговременную, хранение информации и ее дальнейшее считывание.

 

Дата: 2019-05-28, просмотров: 166.