Особенности алгоритмов управления ресурсами
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

От эффективности алгоритмов управления локальными ресурсами компьютера во многом зависит эффективность всей сетевой ОС в целом. Поэтому, характеризуя сетевую ОС, часто приводят важнейшие особенности реализации функций ОС по управлению процессорами, памятью, внешними устройствами автономного компьютера. Так, например, в зависимости от особенностей использованного алгоритма управления процессором, операционные системы делят на многозадачные и однозадачные, многопользовательские и однопользовательские, на системы, поддерживающие многонитевую обработку и не поддерживающие ее, на многопроцессорные и однопроцессорные системы.

Поддержка многозадачности. По числу одновременно выполняемых задач операционные системы могут быть разделены на два класса:

– однозадачные (например, MS-DOS, MSX);

– многозадачные (OC EC, OS/2, UNIX, Windows 95).

Поддержка многопользовательского режима. По числу одновременно работающих пользователей ОС делятся на:

– однопользовательские (MS-DOS, Windows 3.x, ранние версии OS/2);

– многопользовательские (UNIX, Windows NT).

Вытесняющая и невытесняющая многозадачность. Важнейшим разделяемым ресурсом является процессорное время. Способ распределения процессорного времени между несколькими одновременно существующими в системе процессами (или нитями) во многом определяет специфику ОС. Среди множества существующих вариантов реализации многозадачности можно выделить две группы алгоритмов:

– невытесняющая многозадачность (NetWare, Windows 3.x);

– вытесняющая многозадачность (Windows NT, OS/2, UNIX).

Поддержка многонитевости. Важным свойством операционных систем является возможность распараллеливания вычислений в рамках одной задачи. Многонитевая ОС разделяет процессорное время не между задачами, а между их отдельными ветвями (нитями).

Многопроцессорная обработка. Другим важным свойством ОС является отсутствие или наличие в ней средств поддержки многопроцессорной обработки - мультипроцессирование. Мультипроцессирование приводит к усложнению всех алгоритмов управления ресурсами.

Многопроцессорные ОС могут классифицироваться по способу организации вычислительного процесса в системе с многопроцессорной архитектурой: асимметричные ОС и симметричные ОС. Асимметричная ОС целиком выполняется только на одном из процессоров системы, распределяя прикладные задачи по остальным процессорам. Симметричная ОС полностью децентрализована и использует весь пул процессоров, разделяя их между системными и прикладными задачами.

ОС для рабочих групп

 

Сетевые операционные системы имеют разные свойства в зависимости от того, предназначены они для сетей масштаба рабочей группы (отдела), для сетей масштаба кампуса или для сетей масштаба предприятия.

– Сети отделов - используются небольшой группой сотрудников, решающих общие задачи. Главной целью сети отдела является разделение локальных ресурсов, таких как приложения, данные, лазерные принтеры и модемы. Сети отделов обычно не разделяются на подсети.

– Сети кампусов - соединяют несколько сетей отделов внутри отдельного здания или внутри одной территории предприятия. Эти сети являются все еще локальными сетями, хотя и могут покрывать территорию в несколько квадратных километров. Сервисы такой сети включают взаимодействие между сетями отделов, доступ к базам данных предприятия, доступ к факс-серверам, высокоскоростным модемам и высокоскоростным принтерам.

– Сети предприятия (корпоративные сети) - объединяют все компьютеры всех территорий отдельного предприятия. Они могут покрывать город, регион или даже континент. В таких сетях пользователям предоставляется доступ к информации и приложениям, находящимся в других рабочих группах, других отделах, подразделениях и штаб-квартирах корпорации.

Главной задачей операционной системы, используемой в сети масштаба отдела, является организация разделения ресурсов, таких как приложения, данные, лазерные принтеры и, возможно, низкоскоростные модемы. Обычно сети отделов имеют один или два файловых сервера и не более чем 30 пользователей. Задачи управления на уровне отдела относительно просты. В задачи администратора входит добавление новых пользователей, устранение простых отказов, инсталляция новых узлов и установка новых версий программного обеспечения. Операционные системы сетей отделов хорошо отработаны и разнообразны, также, как и сами сети отделов, уже давно применяющиеся и достаточно отлаженные. Такая сеть обычно использует одну или максимум две сетевые ОС. Чаще всего это сеть с выделенным сервером NetWare 3.x или Windows NT, или же одноранговая сеть, например сеть Windows for Workgroups.

Следующим шагом в эволюции сетей является объединение локальных сетей нескольких отделов в единую сеть здания или группы зданий. Такие сети называют сетями кампусов. Сети кампусов могут простираться на несколько километров, но при этом глобальные соединения не требуются.

Операционная система, работающая в сети кампуса, должна обеспечивать для сотрудников одних отделов доступ к некоторым файлам и ресурсам сетей других отделов. Услуги, предоставляемые ОС сетей кампусов, не ограничиваются простым разделением файлов и принтеров, а часто предоставляют доступ и к серверам других типов, например, к факс-серверам и к серверам высокоскоростных модемов. Важным сервисом, предоставляемым операционными системами данного класса, является доступ к корпоративным базам данных, независимо от того, располагаются ли они на серверах баз данных или на миникомпьютерах.

Следующим шагом в эволюции сетей является объединение локальных сетей нескольких отделов в единую сеть здания или группы зданий. Такие сети называют сетями кампусов. Сети кампусов могут простираться на несколько километров, но при этом глобальные соединения не требуются.

Операционная система, работающая в сети кампуса, должна обеспечивать для сотрудников одних отделов доступ к некоторым файлам и ресурсам сетей других отделов. Услуги, предоставляемые ОС сетей кампусов, не ограничиваются простым разделением файлов и принтеров, а часто предоставляют доступ и к серверам других типов, например, к факс-серверам и к серверам высокоскоростных модемов. Важным сервисом, предоставляемым операционными системами данного класса, является доступ к корпоративным базам данных, независимо от того, располагаются ли они на серверах баз данных или на миникомпьютерах.

 

15. Вытесняющие и невытесняющие алгоритмы планирования

 

Существует два основных типа процедур планирования процессов - вытесняющие (preemptive) и невытесняющие (non-preemptive).

Non-preemptive multitasking - невытесняющая многозадачность - это способ планирования процессов, при котором активный процесс выполняется до тех пор, пока он сам, по собственной инициативе, не отдаст управление планировщику операционной системы для того, чтобы тот выбрал из очереди другой, готовый к выполнению процесс.

Preemptive multitasking - вытесняющая многозадачность - это такой способ, при котором решение о переключении процессора с выполнения одного процесса на выполнение другого процесса принимается планировщиком операционной системы, а не самой активной задачей.

Основным различием между preemptive и non-preemptive вариантами многозадачности является степень централизации механизма планирования задач. При вытесняющей многозадачности механизм планирования задач целиком сосредоточен в операционной системе, и программист пишет свое приложение, не заботясь о том, что оно будет выполняться параллельно с другими задачами. При этом операционная система выполняет следующие функции: определяет момент снятия с выполнения активной задачи, запоминает ее контекст, выбирает из очереди готовых задач следующую и запускает ее на выполнение, загружая ее контекст.

При невытесняющей многозадачности механизм планирования распределен между системой и прикладными программами. Прикладная программа, получив управление от операционной системы, сама определяет момент завершения своей очередной итерации и передает управление ОС с помощью какого-либо системного вызова, а ОС формирует очереди задач и выбирает в соответствии с некоторым алгоритмом (например, с учетом приоритетов) следующую задачу на выполнение. Такой механизм создает проблемы как для пользователей, так и для разработчиков.

 

Файловая система H T FS

 

NTFS выросла из файловой системы NPFS, разрабатываемой совместно IBM и Microsoft для проекта OS/2. Она начала использоваться вместе с Windows NT 3.1 в 1993 году. Windows NT 3.1 должна была составить конкуренцию серверам на базе NetWare и Unix, поэтому NTFS вобрала в себя все технологические достижения того времени. Вот основные из них:

1. Работа с большими дисками. NTFS имеет размер кластера 512 байт, что в принципе оптимально, но его можно менять до 64 Кб. Более важно то, что NTFS способна теоретически работать с томами размером в 16,777, 216 терабайт. Теоретически, потому что таких жестких дисков пока не существует.

2. Устойчивость. NTFS содержит две копии аналога FAT, которые называются MFT (Master File Table). В отличие от FAT MS-DOS, MFT больше напоминает таблицу БД. Если оригинал MTF поврежден в случае аппаратной ошибки (например, появление bad-сектора), то система при следующей загрузке использует копию MTF и автоматически создает новый оригинал, уже с учетом повреждений. Но это не самое главное. Главное, что NTFS использует систему транзакций при записи файлов на диск. Эта система пришла из СУБД, где защита целостности данных – жизненно-важное дело. Уже это говорит о ее эффективности. В упрощенном виде она работает так:

– Драйвер ввода/вывода NTFS инициирует процесс записи, одновременно сообщая сервису Log File Service вести регистрацию всего происходящего;

– данные пишутся в КЭШ, под управлением сервиса Cash Manager;

– Cash Manager посылает данные Virtual Memory Manager (менеджеру виртуальной памяти) для записи на диск в фоновом режиме;

– Virtual Memory Manager посылает данные драйверу диска, пропустив их через Fault Tolerant Driver;

– драйвер диска шлет их контроллеру, который уже пишет их либо в КЭШ, либо прямо на диск;

– если это операция проходит без ошибок, запись регистрации удаляется;

– если происходит сбой, запись остается в таблице транзакций, и при следующем доступе к диску Log File Service обнаруживает эту запись и просто восстанавливает все, как было до этой операции.

Такая система гарантирует абсолютную сохранность данных в случае копирования, перемещения и удаления файлов или директорий. При внесении изменений в файл вы теряете те изменения, которые находились в момент сбоя в памяти или в КЭШе контроллера, и не успели записать на диск.

3. Защищенность. NTFS рассматривает файлы как объекты. Каждый файловый объект обладает свойствами такими как его имя, дата создания, дата последнего обновления, архивный статус и дескриптор безопасности. Файловый объект также содержит набор методов, которые позволяют с ним работать, такие, как open, close, read и write. Пользователи, включая сетевые, для обращения к файлу вызывают эти методы, а Security Reference Monitor определяет, имеет ли пользователь необходимые права для вызова какого-либо из этих методов. Кроме этого, файлы можно шифровать.

4. Компрессия данных. NTFS позволяет сжимать отдельные каталоги и файлы, в отличие от DriveSpace который позволял сжимать только диски целиком. Это очень удобно, для экономии пространства на диске, например можно сжимать «на лету» большие географические файлы формата BMP или текстовые файлы, причем для пользователя все это будет прозрачно.

5. Поддержка формата ISO Unicode .формат Unicode использует 16 бит для кодировки каждого символа, в отличие от ASCII, который использовал 8 или 7 бит. Для простого пользователя это означает то, что теперь он может называть файлы на любом языке, хоть на китайском – система это будет поддерживать, не требуя изменить кодовую страницу, как это делал DOS и W9x.

Закон об авторском праве

 

Законодательством РФ об авторском праве и смежных правах сост. из настоящего закона, являющегося частью гражданского законодательства РФ и действует на всей территории РФ, издаваемый в соответствии с настоящим законом и других актов законодательства РФ о «правовой охране программ ЭВМ и БД». В соответствие со статьёй 2 законодательства РФ об авторском праве и смежных правах, автором признаётся физическое лицо, трудом которого создан продукт. БД - объективная форма предоставления и организации совокупности данных, так же эти данные должны быть найдены и обработаны с помощью ЭВМ. Программа для ЭВМ – объективная форма предоставления совокупности данных и команд предназначенных для функционирования ЭВМ и других компьютерных устройств с целью получения результата включая дополнительные материалы в ходе работы ЭВМ и порождаемые ей аудио – визуальные отображения. Охрана программы для ЭВМ распространяется на все виды программ, в том числе и на операционные системы, которые могут быть выражены на любом языке и в любой форме, включая исходные данные, подход, и т.д.

 

Дата: 2019-05-28, просмотров: 221.