1. Получение стандартной высокопроводящей подложки из кремния. Эта подложка покрывается затем оксидной плёнкой кремния требуемой толщины (1,5мкм) с помощью техники окисления.
2. Методом электронно-лучевого напыления на окисел наносится тонкая плёнка молибдена толщиной 0,4мкм.
3. Эта структура покрывается полиметилметакрилатом (ПММ) – высокополимерным соединением, которое представляет собой электронночувствительное сопротивление. Толщина пленки (ПММ) примерно 1мкм.
4. Поверхность ПММ экспонируется в вакууме сфокусированными электронными пучками, формируя на ней пятна нужного диаметра и необходимой конфигурации. Пятна обычно имели диаметр около 1мкм и располагались в узлах квадратной решётки с шагом 25,4мкм или 12,4 мкм.
5. Экспонированные участки растворяются в изопропиловом спирте, а затем происходит травление лежащего ниже этих участков слоя молибдена до диэлектрика.
6. Удаляются остатки ПММ, и слой диэлектрика травится плавиковой кислотой до кремневой подложки. В результате образуется структура, показанная на рис.3.1. Плёнка молибдена слегка нависает над отверстием в диэлектрике, так как кислота не действует на молибден.
7. Методом вакуумного напыления на молибден наносится плёнка алюминия. При этом образец непрерывно вращается вокруг вертикальной оси, и напыление происходит под большим углом к ней. Это делается, чтобы предотвратить попадание алюминия в сетке. Размер отверстия уменьшается до необходимой величины (рис. 3.2.).
8. Через частично закрытое отверстия производится напыление молибдена, при этом внутри отверстия вырастает конус необходимого размера и высоты. Вершина конуса формируется, когда отверстие полностью закрывается. Эта стадия процесса показана на рис. 3.3.
9. Вспомогательный слой алюминия растворяется, находящийся на нем молибденовая пленка удаляется (рис. 3.4.). После термической тренировки в вакууме катод готов к применению.
|
Рис.3.1. Исходная структура для формирования конуса.
![]() |
Рис.3.2. Формирование изолирующего слоя.
Рис.3.3. Формирование конуса напылением.
![]() |
Рис.3.4. Удаление изолирующего слоя.
1-металическая плёнка; 2-диэлектрик; 3-кремневая подложка;
4-ось вращения; 5-направление напыления
Используя такую технологию, были изготовлены катоды с 1,100 и 5000 эмиттерами. Решётка со 100 эмиттерами имела вид матрицы
10 на 10 с шагом 25,4мкм, так что полная область эмиссии представляла собой квадрат со стороной 0,25мм. Решётка с 5000 эмиттерами заполняла круглую область диаметром 1мм с расстоянием между конусами 12,7мкм. Таким образом, плотность упаковки эмиттеров достигла . Фотография поверхности тонкоплёночного катода под большим увеличением приведена на рис.4.
Рис.4 Поверхность тонкоплёночного катода.
![]() | ![]() |
Рис.4.1. Решётка острий под Рис.4.2.Одиночное остриё.
большим увеличением.
Область рабочих напряжений для катодов составляла от100 до 300В. Они работали при давлении мм.рт.ст., которое обеспечивалось непрерывной откачкой. Ток эмиссии одного острия находился в пределах от 50 до 150 мкА. Полный ток с 100-острийного катода достигал 5 мА, что соответствует средней плотности тока с катода 8 А/
. Для катода с 5000 острий в импульсном режиме был получен ток до 100 мА (плотность тока достигла 12 А/
.). Дальнейшее увеличение тока с катода было невозможно, поскольку анод не был приспособлен для диссипации соответствующего количества энергии.
Помимо технологии создания тонкоплёночных катодов, были приведены результаты подробного исследования их характеристик; прежде всего эмиссионных характеристик, стабильности работы, шумовых свойств.
Важнейшими параметрами автоэмиссионных катодов являются коэффициент усиления поля на поверхности острия и эффективная площадь эмиссии. Коэффициент усиления поля β связывает напряжённость электростатического поля на поверхности острия с приложенным напряжением. (*)
Если пренебречь влиянием пространственного заряда эмитированных электронов, то такая связь должна быть линейной, поэтому коэффициент β зависит от геометрии системы и от положения точки наблюдения на поверхности острия. Для расчёта β можно использовать приближённые аналитические формулы или численные методы. В качестве примера на рис.5. приведена рассчитанная численно зависимость коэффициента усиления β от полярного угла для геометрических размеров, соответствующих катоду Спиндта. Как следует из рисунка, поле на поверхности острия практически не уменьшается вплоть до угла
и уменьшается примерно на 10% для угла
.
I/
2.5 1.0
2.0 0.8
1.5 0.6
![]() |
1.0 0.4
0.5 0.2
0.0 30 60 90
Рис.5. Распределение коэффициента усиления поля и плотности тока эмиссии по поверхности острия.
Кривые 1 и 2 соответствуют напряжению 150 – 300В на управляющем электроде.
На этом рисунке приведены, рассчитанные с использованием закона Фаулера – Норд гейма, где плотности тока эмиссии от угла для напряжений V=150 и 300В. Видно, что основной вклад в автоэмиссионный ток дают точки поверхности, для которых
. Угол
можно использовать для определения эффективной площади эмиссии:
(3)
Дата: 2019-05-28, просмотров: 205.