Атомистика первой половины XX в
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Исследования по радиоактивнос­ти стали проводиться в России поч­ти сразу после открытия Беккереля. Ученые И. И. Боргман (1900 г.) и А. П. Афанасьев исследовали свойст­ва радиоактивного излучения, в част­ности лечебные свойства целебных грязей. В. К. Лебединский (1902 г.) и И. А. Леонтьев (1903 г.) изучали влия­ние радиоактивности на искровые разряды и определили одними из пер­вых природу гамма-лучей. Н. А. Ор­лов исследовал действие радия на ме­таллы, парафин, легкоплавкие орга­нические вещества. Кроме Петербург­ского университета такого рода рабо­ты велись в Медицинской академии, в университетах Новороссийска, Харькова и других городов. Важные результаты в этой области были по­лучены В. А. Бородовским, Г. Н. Антоновым, Л. С. Коловрат-Червинским.

В. А. Бородовский, закончив фи­зико-математический факультет Юрьевского университета в 1902 г., работал с 1908 г. в Англии в лабора­тории Кенсингтона, а затем в лабо­ратории Кавендиша (Кембридж). Им написана работа «Поглощение бета-лучей радия», он одним из первых установил наличие радия в ферганс­кой радиоактивной руде. Именно из нее в 1921 г. В. Г. Хлопин получил отечественный препарат радия.

Г. Н. Антонов работал несколь­ко лет в лаборатории Резерфорда. В 1911 г. он открыл уран V. Среди ученых были сомнения. Тогда Резерфорд по рекомендации Содой пере­дал Антонову 60 г ураннитрата, с по­мощью которого в России Антонов доказал свою правоту. «Уран превра­щается одновременно в два продук­та, - докладывал Антонов на заседа­нии Российского физико-химичес­кого общества (РФХО), – в уран Х и в меньшем количестве в уран V».

Результаты работ Л. С. Коловрат-Червинского по радиоактивности имели большое научное значение. С 1906 г. он в течение пяти лет работал в лаборатории М. Кюри, провел эк­сперименты по исследованию бета-лучей и составил «Таблицы констант радиоактивных веществ». Его рабо­ты нашли отражение в монографии Марии Кюри и в книге Резерфорда «Радиоактивные вещества и их излу­чение». Коловрат-Червинским было написано около 250 научных трудов. Он был одним из первых крупных ученых дореволюционной России, который после Октябрьской револю­ции развернул в нашей стране рабо­ты по радиологии. Смерть в 1921 г. в возрасте 49 лет прервала его работу в Государственном рентгенологичес­ком и радиологическом институте.

В 1910 г. в Одессе была создана радиологическая лаборатория, в Том­ске спустя некоторое время была ор­ганизована аналогичная лаборатория.

После 1917 г. был создан Ра­диевый институт под руководством В. И. Вернадского, заместителем ко­торого стал В. Г. Хлопин. В послере­волюционные годы было создано радиевое производство на базе оте­чественных месторождений.

Без участия в этих работах русских ученых-радиологов всех направлений не было бы базы для создания оте­чественной радиевой промышленнос­ти и развития советской радиологии, а в будущем советской атомной на­уки и промышленности.

История высвобождения и исполь­зования внутриядерной энергии ато­ма не могла идти самостоятельным, каким-то отдельным путем, это ис­тория развития многих наук, прежде всего физики и химии.

В открытии и высвобождении внутриядерной энергии атома при­няли участие ученые многих стран мира, разных национальностей и раз­нообразных профессий. Этот невиданный ранее источник энергии, скрывающийся в недрах атома, при­надлежит всему человечеству.

В 1900 г. немецкий физик-теоре­тик М. Планк (1858-1947) ввел но­вую универсальную постоянную, на­званную им элементарным квантом действия. Введя понятие кванта энер­гии, он сформулировал квантовую гипотезу, положив тем самым начало квантовой теории, или, коротко, атомизации действия. В первые годы эта теория не имела «шумного успеха», пока ее не применил А. Эйнштейн и не показал ее Незаменимость для понимания явлений, происходящих в микромире.

В 1910-1914 гг. А. Эйнштейн (1879-1955) создал общую теорию относительности, в которой сформу­лировал новый подход к проблеме пространства и времени. Принцип относительности Эйнштейна – за­кон такой же абсолютной силы и значения, как и закон сохранения энергии. Позже Эйнштейн был вынужден эмигрировать из Германии и отказаться от немецкого гражданства. Он уехал в 1932 г. из гитлеровской Гер­мании, стал эмигрантом, переселил­ся в США и приступил к работе в Принстоне в Институте высших ис­следований. Принимал участие в ан­тивоенном движении, выступал про­тив фашизма.

Но фашизм наступал. Гитлеровс­кая Германия в марте 1938 г. захвати­ла Австрию, в марте 1939 г. аннекси­ровала Чехословакию.

Великобритания и Франция шли на уступки территориальным притя­заниям гитлеровского правительст­ва, надеясь этим удовлетворить по­ползновения гитлеровской Германии и направить ее военную силу против СССР.

Общественность всех стран чув­ствовала, что мировая война стано­вится неизбежной. Ученые США, в частности, понимали, к каким тяже­лым последствиям она может привести, поскольку гитлеровская Гер­мания обладала очень сильным науч­ным и техническим потенциалом. Немецкие ученые вплотную подошли к возможности применения внут­риядерной энергии атомов урана в военных целях. Именно в Германии впервые было осуществлено деление ядер урана. Вот почему ученые – физики-эмигранты, и среди них Сцилард и Теллер, ­- убеждали Альберта Эйнштейна обратиться к президенту Соединенных Штатов Ф. Рузвельту с предложением развернуть в США работы по созданию ядерного ору­жия, ядерной бомбы, с тем чтобы опередить Германию.

После длительных размышлений и внутренней борьбы Эйнштейн пред­ложил начать работы по созданию ядерной бомбы, хотя по натуре своей он был убежденным пацифистом.

2 августа 1939 г. Альберт Эйнштейн направил письмо президенту США Франклину Делано Рузвельту.

 

Ф. Д. Рузвельту

Президенту Соединенных Штатов

Белый дом, Вашингтон

Сэр!

Некоторые недавние работы Фер­ми и Сциларда, прочитанные мной в рукописи, заставляют меня ожидать, что уран может быть в ближайшем будущем превращен в новый и важ­ный источник энергии. Некоторые аспекты возникшей ситуации, по-видимому, требуют бдительности и, при необходимости, быстрых дейст­вий со стороны правительства. Я счи­таю своим долгом обратить Ваше внимание на следующие факты и рекомендации.

В течение последних четырех ме­сяцев благодаря работам Жолио во Франции, а также Ферми и Сциларда в Америке стало реальным получе­ние ядерной реакции при больших количествах урана, вследствие чего можно освободить значительную энергию и получить большие коли­чества радиоактивных элементов. Можно считать почти достоверным, что это будет достигнуто в ближай­шем будущем. В свою очередь это может способствовать созданию бомб, возможно, исключительно мощных бомб нового типа. Одна бом­ба этого типа, доставленная на ко­рабле и взорванная в порту, пол­ностью разрушит весь порт с приле­гающей к нему территорией. Такие бомбы могут оказаться слишком тя­желыми для воздушной перевозки.

Соединенные Штаты обладают малым количеством урана. Ценные месторождения его находятся в Ка­наде и Чехословакии. Серьезные ис­точники – в Бельгийском Конго. Ввиду этого было бы желательным установление постоянного контакта между правительством и группой физиков, исследующих в Америке проблемы цепной реакции.

Для такого контакта Вы могли бы уполномочить лицо, пользую­щееся Вашим доверием, неофици­ально выполнять следующие обя­занности:

а) поддерживать связь с прави­тельственными учреждениями, информировать их об исследованиях и давать им необходимые рекомен­дации, в особенности в части обес­печения Соединенных Штатов ура­ном;

б) содействовать ускорению эк­спериментальных работ, ведущихся сейчас за счет внутренних средств университетских лабораторий, путем привлечения частных лиц и промыш­ленных лабораторий, обладающих нужным оборудованием.

Мне известно, что Германия в настоящее время прекратила прода­жу урана из захваченных чехословац­ких рудников.

Необходимость таких шагов, быть может, станет понятна, если учесть, что сын заместителя германского министра иностранных дел фон Вайцзеккер прикомандирован к Фи­зическому институту Общества кай­зера Вильгельма в Берлине, где в настоящее время повторяются аме­риканские работы по урану.

Искренне Ваш Альберт Эйнштейн

Олд Гров Ред, Нассау-Пойнт-Пеконик, Лонг Айленд

2 августа 1939 г.

В интервью японской газете в 1951 г. А. Эйнштейн так объяснил свою роль в создании ядерной бом­бы:

«Мое участие в создании ядерной бомбы состояло в одном-единственном поступке, я подписал письмо президенту Рузвельту, в котором под­черкивал необходимость проведения в крупных масштабах экспериментов по изучению возможности создания ядерной бомбы. Я полностью отда­вал себе отчет в том, какую опасность для человечества означает успех это­го мероприятия. Однако вероятность того, что над той же самой пробле­мой с надеждой на успех могла рабо­тать и нацистская Германия, заста­вила меня решиться на этот шаг. Я не имел другого выбора, хотя я всегда был убежденным пацифис­том...»

Письмо А. Эйнштейна не сразу привело к действиям администрации США.

Рузвельт распорядился о созда­нии Консультативного комитета по урану в тот же день, когда ответил на письмо Эйнштейна, но решение о развертывании крупномасштабной программы создания ядерного ору­жия было принято только в октябре 1941 г., после получения сведений о работе англичан в этом направле­нии.

Нападение японских военно-воз­душных сил на Пирл-Харбор 8 де­кабря 1941 г. привело к тому, что США объявили войну Японии, Гер­мании и Италии. После вступления США в войну программа создания ядерной бомбы перешла из стадии научных исследований в стадию прак­тических разработок.

В середине 1942 г. администрация США поняла, что «...несколько ки­лограммов урана-235 или плутония-239 представляют собой взрывчатку, эквивалентную по своей мощи не­скольким тысячам тонн обычных взрывчатых веществ» (из доклада В. Буша 17 июня 1942 г. президенту США Ф. Д. Рузвельту).

В результате указаний президента США 13 августа 1942 г. был создан специальный округ инженерных войск под названием Манхэттенский в Лос-Аламосе, штат Нью-Мексико, в пус­тыне, недалеко от Санта-Фэ. Руково­дителем Манхэттенского проекта был назначен бригадный генерал инже­нерных войск Л. Гровс, а научным руководителем – физик-теоретик Юлиус Роберт Оппенгеймер.

С этого времени началась работа огромного масштаба, поглотившая колоссальные средства, материаль­ные ресурсы, человеческие усилия и приведшая к созданию ядерной бом­бы невиданной мощи в июле 1945 г.

Но вернемся к истокам освоения нового источника энергии.

В 1911 г. Э. Резерфорд (1871-1937) сделал в Манчестере доклад «Рассея­ние альфа- и бета-лучей и строение атома». X. Гейгер и Э. Марсден про­вели экспериментальную провер­ку идеи Резерфорда о строении ато­ма. Они подтвердили существование ядра атома как устойчивой его части, несущей в себе почти всю массу ато­ма и обладающей положительным зарядом.

В 1913 г. Н. Бор (1885-1962) опуб­ликовал серию статей «О строении атомов и молекул», открывших путь к атомной квантовой механике. При­мерно в это же время начались, как известно, первые трудности электро­магнитной концепции микромира. Уже квантовая механика несла в себе совершенно новые взгляды на мик­ропроцессы. Так, в основу многих уравнений квантовой механики вхо­дило значение массы микрочастиц, а открытие спина (от английского spin – вращение), т. е. собственного мо­мента количества движения, у элек­трона С. Гаудсмитом и Дж. Уленбеком (1925 г.) и выдвижение принци­па запрета В. Паули (1925г.) противо­речили существовавшим представле­ниям в физике. Но наиболее важной оказалась гипотеза нейтрино, выдвинутая в 1931 г. Паули с целью объяс­нения кажущихся аномалий в энер­гетическом распределении электро­нов, вылетающих при бета-распаде. Нейтрино было четвертой элемен­тарной частицей (после электрона, фотона и протона), с которой столкнулась физика того времени.

В. Паули предположил, что при бета-распаде из ядра вылетает не одна частица – электрон (как предполага­лось ранее), а две – электрон и час­тица, названная Паули нейтрино.

На основе опытов Дж. Аллена, выполненных 10 лет спустя, в 1942 г. было установлено, что нейтрино име­ет массу покоя, значительно мень­шую (1/30) массы электрона, и полностью лишено электрического за­ряда и магнитного момента.

Если природа трех ранее откры­тых элементарных частиц (электро­на, фотона и протона) могла считать­ся электромагнитной, то в отноше­нии нейтрино сказать это было почти невозможно. Однако до 1932 г. элек­тромагнитная теория господствова­ла. Решающим шагом в признании новой физической идеи стало откры­тие Чедвиком (1932 г.) пятой частицы - нейтрона.

История открытия нейтрона до­статочно поучительна. Еще в 1920 г. Резерфорд выдвинул предположение о существовании нейтральной час­тицы. В 1930 г. В. Боте и Г. Бекер сообщили о проникающем излуче­нии, появляющемся при бомбарди­ровке альфа-частицами ядер легких элементов. Особенно значительный эффект получался при бомбардиров­ке бериллия. В качестве детектора излучения был использован счетчик Гейгера. Боте и Бекер предположи­ли, что наблюдаемое излучение пред­ставляет собой поток гамма-квантов высокой энергии.

Почти одновременно с этими не­мецкими учеными Ирен и Фреде­рик Жолио-Кюри повторили их опыты, используя источник поло­ния большой активности. Детек­тором служила ионизационная ка­мера. Используя разные экраны, они убедились в «сверхпроникающей» способности исследуемого излучения. Помещая на пути пото­ка частиц экраны из водородсодержащих веществ (парафина в том числе), они ожидали, что поток уменьшится, но он даже увели­чился. Ученые пришли к выводу, что столкнулись с каким-то новым явлением. Продолжая опыты, они убедились, что излучение Боте-Бекера способно выбивать ядра из ато­мов водорода, гелия и азота. Они установили, что выбитые частицы приобретали значительную энергию и что в пространство излучаются элек­троны высоких энергий. Жолио-Кюри опубликовали результаты сво­их опытов и выяснилось, что энер­гия излучения Боте-Бекера гораздо больше энергии гамма-излучения.

В феврале 1932 г. ученик Резерфорда Дж. Чедвик после ознакомле­ния с результатами опытов Жолио-Кюри измерил с помощью электрон­ного оборудования, пропорционального усилителя, отдельные импуль­сы, возникающие при прохождении ядер и электронов через счетчик, и разделил их. Оборудование, которым пользовался Чедвик, было более со­вершенным, и результаты его опытов показали, что первоначальное пред­положение Боте и Бекера, а также И. и Ф. Жолио-Кюри об электро­магнитной природе сверхпроникающего излучения неверно.

Чедвик установил, что это излуче­ние состоит из электрически ней­тральных частиц с массой, пример­но равной массе ядра протона. Это были нейтроны.

Открытие нейтрона является ре­зультатом работы ученых трех стран: Германии, Франции и Англии. Исто­рия открытия нейтрона лишний раз иллюстрирует, что путь к высотам науки изобилует сложностями и весь­ма тернист.

Открытие нейтрона указало на су­ществование в природе нового типа сил – ядерных. Значение этого откры­тия для развития ядерной физики необычайно велико, оно позволило пре­одолеть трудности, стоявшие на пути познания строения ядра атома. Нейт­рон – это «золотой ключик», открыв­ший двери в ядерную энергетику.

Открытие нейтрона стимулирова­ло появление фундаментальных направлений науки, таких как физика атомного ядра, физика элементар­ных частиц. Впоследствии самостоя­тельной областью физики стала ней­тронная физика.

При этом следует отметить, что открытие нейтрона не было случайным, на его существование указы­вало много сопутствующих фактов, и потому его обнаружение – зако­номерное следствие знаменитых опытов Резерфорда 1919 г. по ис­кусственному расщеплению ядер альфа-частиц, работ Боте и Бекера, И. и Ф. Жолио-Кюри. Но обнаружил нейтрон Дхеймс Чедвик. Свое от­крытие Чедвик опубликовал в статье «Возможное существование нейтро­на», которую он направил в печать 17 февраля 1932 г.

Этот день по праву считается днем открытия нейтрона.

О гениальном английском физике Эрнесте Резерфорде (1871-1937) говорилось уже не раз, но в связи с открытием нейтрона Дж. Чедвиком, его учеником и со­трудником Кавендишской лаборато­рии, следует сказать о нем и о его вкладе в физическую науку.

Э. Резерфорд заложил основы уче­ния о радиоактивности и строении атома. Он первым осуществил искусственное превращение элементов, установил, что корпуску­лярное излучение состоит из альфа- и бета-лучей.

В 1903 г. совместно с Ф. Содди Резерфорд объяснил радиоактивность как спонтанный распад атома вещес­тва, при котором он меняет свое место в периодической системе эле­ментов. Резерфорд доказал, что в центре атомов существует массивное положительно заряженное ядро, он же предложил планетарную модель атома, в центре которого находится положительно заряженное ядро, а вокруг него по орбитам движутся отрицательно заряженные электро­ны. (Здесь хочется на­помнить о гениальных догадках древ­негреческих философов, которые указывали, что атомы непрерывно движутся.) За 12 лет до открытия нейтрона Резерфорд высказал предположение о существовании нейтральной час­тицы - нейтрона, и в 1932 г. оно подтвердилось.

В Кавендишской лаборатории Резерфорда работали и стажирова­лись молодые ученые из разных стран и в том числе и русские уче­ные П. Л. Капица, К. И. Синельников, А. И. Лейпунский, Ю. Б. Харитон.

Итак, 1932 год стал годом великих открытий в ядерной физике. В этом году возникла физика нового типа, имеющая дело со строением атомов и исследующая неизвестные до того времени силы и взаимодействия частиц в ядре атома. Три открытия 1932 г. считаются особенно важными для дальнейшего развития атомной и ядерной физики:

1. открытие нейтрона;

2. обнаружение позитрона К. Андерсоном в космических лучах. Это была первая открытая учеными ан­тичастица;

3. открытие американским хими­ком Г. Юри вместе с Ф. Брикведце и Г. Мерфи дейтерия – тяжелого водо­рода, стабильного изотопа водорода с массовым числом 2. При создании первой американской бомбы Юри руководил производством тяжелой воды (с дейтерием) и участвовал в работах по разделению изотопов ура­на.

Хотя мы и называем 1932 год годом великих открытий, но роль этих замечательных открытий в раз­витии науки была определена го­раздо позднее. Тогда за ними лишь следовали события, которые слу­жили как бы продолжением этих открытий.

Первым наиболее выдающимся открытием, совершенным после того, как Чедвик доказал существование нейтрона, было открытие Ирен и Фредериком Жолио-Кюри в 1934 г. искусственной радиоактивности. В этом могли видеть некоторую закономерность. Ведь Жолио-Кюри сде­лали важный шаг к открытию ней­трона, и естественно, что они про­должали опыты по исследованию нейтрона. Для этого у них в лабора­тории било все приспособлено. Они имели источники альфа-излучения и опыт работы в молодой тогда области физики элементарных частиц. Их работы показали, что при облучении альфа-частицами легких элементов некоторые из них испускали наряду с нейтронами и позитроны.

И. и Ф. Жолио-Кюри предпол­ожили, что натолкнулись на какое-то совершенно новое явление, нигде ранее не упоминавшееся, а именно – позитронное излучение. В своих опы­тах они бомбардировали алюминий альфа-частицами большой скорости, а затем постепенно удаляли источ­ник альфа-частиц, но алюминиевый листок продолжал излучать положи­тельные электроны, т. е. позитроны, в течение достаточно продолжитель­ного времени. Так была открыта ис­кусственная радиоактивность (тер­мин родился в Париже, где почти за 40 лет до этого появился термин «радиоактивность»).

Искусственную радиоактивность открыли в 1933 г., а в 1935 г. Ф. Жо­лио-Кюри в своем Нобелевском до­кладе сказал: «Мы видим, что не­сколько сотен различного рода ато­мов, составляющих нашу планету, не являются раз и навсегда созданными и существуют не вечно. Мы воспри­нимаем это именно так потому, что некоторые существуют еще и сейчас. Другие же, менее устойчивые атомы уже исчезли. Из этих последних некоторые, вероятно, будут вновь получены в лабораториях. До настоя­щего времени удалось получить лишь элементы с небольшой продолжи­тельностью жизни - от доли секунды до нескольких месяцев. Чтобы полу­чить достойные упоминания количества элементов со значительно большой продолжительностью жиз­ни, необходимо располагать очень мощным источником излучений».

Ныне в США, России, Европе и других странах появились очень мощ­ные источники излучений в виде ус­корителей протонов и электронов на гигантские энергии.

Дж. Кокрофт (1897-1967), ан­глийский физик, в 1932 г. вместе с Э. Уолтоном создал высоковольтный генератор, работающий по принципу умножения напряжения. Ускоряя ионы до больших скоростей, они сумели в первой половине 1932 г. ускоренными протонами осуществить ядерную реакцию, облучая литиевую мишень, и расщепили ядра атомов лития. Здесь уместно добавить, что в Советском Союзе, в Харьковском физико-техническом институте, ученые-физики К. Д. Синельников, А. К. Вальтер, А. И. Лейпунский и Г. Д. Латышев повторили к ноябрю 1932 г. эксперимент на каскадном генераторе, созданном харьковчана­ми, и расщепили ядро лития. Это сообщение произвело на Западе фу­рор, так как никто не мог ожидать, что в далеком Харькове есть такие кадры физиков и возможности со­здать каскадный генератор в корот­кие сроки.

Вскоре после открытия нейтрона возникли гипотезы о строении ядра. В дискуссии включились физики-тео­ретики, и в их числе Д. Д. Иваненко. В 1932 г. он высказал гипотезу о про­тон-нейтронном составе ядер. Эта модель не сразу была принята, и, в частности, теоретик В. Гейзенберг провел большую работу, участвуя в дискуссиях по структуре атомного ядра: он развил идею обменного характера взаимодействий нуклонов в ядре.

Итальянский физик Э. Ферми (1901-1954), в 1938 г. эмигрировав­ший из фашистской Италии в США, внес большой вклад в развитие со­временной теоретической и экспериментальной физики. Он заложил основы нейтронной физики, впер­вые наблюдал искусственную радио­активность, вызванную бомбардиров­ками нейтронами ряда элементов, в том числе урана, создал теорию этого явления. Позднее, а именно в декаб­ре 1942 г., Ферми первому в мире удалось осуществить управляемую цепную реакцию в построенном им в США первом в мире ядерном реак­торе.

В 1934 г. Э. Ферми пытался с помощью бомбардировки нейтрона­ми элемента урана получить заурановые элементы, не существующие в природе. В результате бомбардиров­ки наблюдалось образование ряда радиоактивных веществ. Химичес­кие исследования показали, что эти вещества являлись изотопами из­вестных элементов периодической системы. Наблюдаемое им впервые в истории физики деление ядер урана не было правильно понято. Ферми предположил, что ядро урана, захватив нейтрон, становится бета-радиоактивным и после испускания бета-частицы превращается в ядро нового трансуранового элемента.

Эта работа Ферми и посвященные тем же проблемам работы его друга Э. Сегре привлекли широкое внима­ние ученых к возможности деления ядер урана. В конце 1934 г. извест­ный физико-химик Ида Ноддак вы­ступила в техническом журнале с общим тезисом о том, что с научной точки зрения недопустимо говорить о новых элементах, не установив, что при облучении урана нейтронами не возникают какие-либо известные химические элементы: «Допустимо, что при бомбардировке тяжелых ядер нейтронами эти ядра распадаются на несколько больших осколков, кото­рые являются изотопами известных элементов, хотя и не соседних с об­лученными».

«Читая сегодня эту фразу, мы ви­дим в ней ясное предсказание воз­можности деления ядер» (это выска­зывание принадлежит В. Герлаху, известному немецкому физику). Но в 1934 г. на эту мысль Иды Ноддак не обратили внимания, ее пророчество повисло в воздухе, и только после опубликования работ по делению ядер О. Ганом и Ф. Штрассманном в 1939 г. И. Ноддак попыталась при­своить себе честь открытия деления ядер урана. Но ученые с этим не согласились, так как Ган и Штрассманн осуществили деление ядер урана медленными нейтронами.

Дата: 2019-05-28, просмотров: 235.