Минимальное идеальное хеширование
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Как уже упоминалось выше, идеальная хеш-функция должна быстро работать и минимизировать число коллизий. Назовем такую функцию идеальной (perfect hash function) [12]. С такой функцией можно было бы не пользоваться механизмом разрешения коллизий, т.к. каждый запрос был бы удачным. Но можно наложить еще одно условие: хеш-функция должна заполнять хеш-таблицу без пробелов. Такая функция будет называться минимальной идеальной хеш-функцией. Это идеальный случай с точки зрения потребления памяти и скорости работы. Очевидно, что поиск таких функций – очень нетривиальная задача.

Один из алгоритмов для поиска идеальных хеш-функций был предложен Р. Чичелли [13]. Рассмотрим набор некоторых слов, для которых надо составить минимальную идеальную хеш-функцию. Пусть это будут некоторые ключевые слова языка С++. Пусть это будет какая-то функция, которая зависит от некоего численного кода каждого символа, его позиции и длины. Тогда задача создания функции сведется к созданию таблицы кодов символов, таких, чтобы функция была минимальной и идеальной. Алгоритм очень прост, но занимает очень много времени для работы. Производится полный перебор всех значений в таблице с откатом назад в случае необходимости, с целью подобрать все значения так, чтобы не было коллизий. Если взять для простоты функцию, которая складывает коды первого и последнего символа с длиной слова (да, среди слов умышленно нет таких, которые дают коллизию), то алгоритм дает следующий результат:

 

Буква Код Буква Код Буква Код Буква Код Буква Код
a -5 e 4 i 2 n -1 t 10
b -8 f 12 k 31 o 22 u 26
c -7 g -7 l 29 r 5 v 19
d -10 h 4 m -4 s 7 w 2

 

 

Слово Хеш Слово Хеш Слово Хеш Слово Хеш
Auto 21 Double 0 Int 15 Struct 23
Break 28 Else 12 Long 26 Switch 17
Case 1 Enum 4 Register 18 Typedef 29
Char 2 Extern 9 Return 10 Union 30
Const 8 Float 27 Short 22 Unsigned 24
Continue 5 For 20 Signed 3 Void 13
Default 7 Goto 19 Sizeof 25 Volatile 31
Do 14 If 16 Static 6 While 11

 

Подробный анализ алгоритма, а также реализацию на С++ можно найти по адресу [12]. Там же описываются методы разрешения коллизий. К сожалению, эта тема выходит за рамки этой работы.


 


Разрешение коллизий

Составление хеш-функции – это не вся работа, которую предстоит выполнить программисту, реализующему поиск на основе хеширования. Кроме этого, необходимо реализовать механизм разрешения коллизий. Как и с хеш-функциями существует несколько возможных вариантов, которые имеют свои достоинства и недостатки.

Метод цепочек

Метод цепочек – самый очевидный путь решения проблемы. В случае, когда элемент таблицы с индексом, который вернула хеш-функция, уже занят, к нему присоединяется связный список. Таким образом, если для нескольких различных значений ключа возвращается одинаковое значение хеш-функции, то по этому адресу находится указатель на связанный список, который содержит все значения. Поиск в этом списке осуществляется простым перебором, т.к. при грамотном выборе хеш-функции любой из списков оказывается достаточно коротким. Но даже здесь возможна дополнительная оптимизация. Дональд Кнут ([3], стр. 558) отмечает, что возможна сортировка списков по времени обращения к элементам. С другой стороны, для повышения быстродействия желательны большие размеры таблицы, но это приведет к ненужной трате памяти на заведомо пустые элементы. На рисунке ниже показана структура хеш-таблицы и образование цепочек при возникновении коллизий.

 

 

Прекрасная наглядная иллюстрация этой схемы разрешения коллизий в виде Java-апплета вместе с исходным кодом на C++ представлена по адресу [14].

Открытая адресация

Другой путь решения проблемы, связанной с коллизиями, состоит в том, чтобы полностью отказаться от ссылок, просто просматривая различные записи таблицы по порядку до тех пор, пока не будет найден ключ K или пустая позиция [3]. Идея заключается в формулировании правила, согласно которому по данному ключу определяется «пробная последовательность», т.е. последовательность позиций таблицы, которые должны быть просмотрены при вставке или поиске ключа K. Если при поиске встречается пустая ячейка, то можно сделать вывод, что K в таблице отсутствует, т.к. эта ячейка была бы занята при вставке, т.к. алгоритм проходил ту же самую цепочку. Этот общий класс методов назван открытой адресацией [4].

 

 

Линейная адресация

Простейшая схема открытой адресации, известная как линейная адресация (линейное исследование, linear probing) использует циклическую последовательность проверок

 

h(K), h(K - 1), …, 0, M – 1, M – 2, …, h(K) + 1

 

и описывается следующим алгоритмом ([3], стр. 562). Он выполняет поиск ключа K в таблице из M элементов. Если таблица не полна, а ключ отсутствует, он добавляется.

Ячейки таблицы обозначаются как TABLE[i], где 0 ≤ i < M и могут быть или пустыми, или занятыми. Вспомогательная переменная N используется для отслеживания количества занятых узлов. Она увеличивается на 1 при каждой вставке.

 

1. Установить i = h(K)

2. Если TABLE[i] пуст, то перейти к шагу 4, иначе, если по этому адресу искомый, алгоритм завершается.

3. Установить i = i – 1, если i < 0, то i = i +M. Вернуться к шагу 2.

4. Вставка, т.к. поиск оказался неудачным. Если N = M – 1, то алгоритм завершается по переполнению. Иначе увеличить N, пометить ячейку TABLE[i] как занятую и установить в нее значение ключа K.

 

Опыты показывают ([3], стр. 564), что алгоритм хорошо работает в начале заполнения таблицы, однако по мере заполнения процесс замедляется, а длинные серии проб становятся все более частыми.

Дата: 2019-05-28, просмотров: 271.