- Классификация как правило, выполняется с помощью обучения с учителем на этапе собственно обучения.
- Кластеризация как правило, выполняется с помощью обучения без учителя
- Регрессия как правило, выполняется с помощью обучения с учителем на этапе тестирования, является частным случаем задач прогнозирования.
- Понижение размерности данных и их визуализация выполняется с помощью обучения без учителя
- Восстановление плотности распределения вероятности по набору данных
- Одноклассовая классификация и выявление новизны
- Построение ранговых зависимостей
Типы входных данных при обучении
- Признаковое описание объектов — наиболее распространённый случай.
- Описание взаимоотношений между объектами, чаще всего отношения попарного сходства, выражаемые при помощи матрицы расстояний, ядер либо графа данных
- Временной ряд или сигнал.
- Изображение или видеоряд.
Типы функционалов качества
При обучении с учителем - функционал качества может определяется как средняя ошибка ответов. Предполагается, что искомый алгоритм должен его минимизировать. Для предотвращения переобучения в минимизируемый функционал качества часто в явном или неявном виде добавляют регуляризатор.
При обучении без учителя - функционалы качества могут определяться по-разному, например, как отношение средних межкластерных и внутрикластерных расстояний.
При обучении с подкреплением - функционалы качества определяются физической средой, показывающей качество приспособления агента.
Практические сферы применения
Целью машинного обучения является частичная или полная автоматизация решения сложных профессиональных задач в самых разных областях человеческой деятельности.
- Машинное обучение имеет широкий спектр приложений:
- Распознавание речи
- Распознавание изображений
- Распознавание рукописного ввода
- Техническая диагностика
- Медицинская диагностика
- Прогнозирование временных рядов
- Биоинформатика
- Обнаружение мошенничества
- Обнаружение спама
- Категоризация документов
- Биржевой технический анализ
- Финансовый надзор
- Кредитный скоринг
- Предсказание ухода клиентов
- Хемоинформатика
Сфера применений машинного обучения постоянно расширяется. Повсеместная информатизация приводит к накоплению огромных объёмов данных в науке, производстве, бизнесе, транспорте, здравоохранении. Возникающие при этом задачи прогнозирования, управления и принятия решений часто сводятся к обучению по прецедентам. Раньше, когда таких данных не было, эти задачи либо вообще не ставились, либо решались совершенно другими методами.
Автоматическое доказательство
Автоматическое доказательство— доказательство, реализуемое программно. В основе лежит аппарат математической логики. Используются идеи теории искусственного интеллекта. Процесс доказательства основывается на логике высказываний и логике предикатов.
Логика высказываний (или пропозициональная логика) — это формальная теория, основным объектом которой служит понятие логического высказывания. С точки зрения выразительности, её можно охарактеризовать как классическую логику нулевого порядка. Логика высказываний является простейшей логикой, максимально близкой к человеческой логике неформальных рассуждений и известна ещё со времён античности.
Логика первого порядка (исчисление предикатов) — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций, и предикатов. Расширяет логику высказываний. В свою очередь является частным случаем логики высшего порядка.
Дата: 2019-05-28, просмотров: 198.