Глава 1. Обзор дисковых устройств
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Оглавление.

Введение.

1. Глава 1. Обзор дисковых устройств.

2. Глава 2. Физические аспекты работы с дисками.

3. Глава 3. Работа с дисками на физическом уровне.

3.1. Определение типа компьютера.

3.2. Прерывание INT 11h.

3.3. Анализ содержимого CMOS-памяти.

3.4. Таблицы параметров НМД и НГМД.

4. Глава 4. Программирование контроллера НГМД.

4.1. Порты контроллера НГМД.

4.2. Команды для контроллера НГМД.

4.3. Использование команд контроллера НГМД.

4.4. Немного о контроллере прямого доступа к памяти.

5. Глава 5. Функции BIOS для работы с дисками.

6. Глава 6. Работа с дисками по средствам MS-DOS.

6.1. Таблица разделов и логические диски.

6.2. Главная загрузочная запись.

6.3. Таблица разделов диска.

6.4. Загрузочная запись.

6.5. Загрузка операционной системы.

6.6. Поля элемента таблицы раздела диска.

6.7. Первичный и расширенный раздел.

6.8. Загрузочная запись.

6.9. Формат загрузочной записи.

6.10. Расширенный блок параметров BIOS.

6.11. Логический номер сектора.

6.12. Прерывания INT 25h и INT 26h.

6.13. Таблица размещения файлов.

6.14. Последовательный и прямой доступ.

6.15. Кластеры.

6.16. Содержимое таблицы FAT.

6.17. Два формата таблицы FAT.

6.18. Определение формата таблицы FAT.

6.19. Идентификация кластеров.

6.20. Чтение таблицы FAT.



Введение.

В распоряжении программиста имеются средства разного уровня, предназначенные для работы с дисковой системой в среде MS-DOS.

Во-первых, любая программа может обращаться непосредственно к аппаратуре контроллера жесткого диска или контроллера накопителя на гибких магнитных дисках. Это самый низкий уровень, применение которого оправдано далеко не всегда. Более того, во многих источниках настоятельно рекомендуется не работать с контроллером на уровне портов, если точно не известно, зачем это нужно. Большинство задач решается с применением функций MS-DOS или BIOS (даже такие нетрадиционные задачи, как защита от несанкционированного копирования). Однако иногда программист бывает вынужден использовать самый низкий уровень, рискуя потерять совместимость с многочисленными типами дисковых контроллеров.

Во-вторых, программа MS-DOS может работать с дисками при помощи прерывания BIOS. В работе будут рассмотрены различные функции прерывания INT 13h, предназначенного для выполнения операций чтения, записи и форматирования. Использование функций прерывания INT 13h намного предпочтительнее, чем непосредственное программирование контроллера, так как BIOS скрывает особенности аппаратной реализации контроллера.

В-третьих, программа может обращаться к прерываниям MS-DOS, специально предназначенным для доступа к дисковой системе. Сервис, предоставляемый этими прерываниями также можно разделить на низко- и высокоуровневый, поэтому у программиста всегда есть выбор.

Выбирая средства обращения к дисковой системе, программист должен вначале рассмотреть возможность использования наиболее высокоуровневых документированных средств, таких как прерывания MS-DOS. И лишь затем имеет смысл обратиться к функциям BIOS или к программированию портов контроллера.

Несмотря на все сказанное выше, повествование о средствах работы с дисковой системой будет вестись в обратном порядке. Вначале будет рассказано об использовании наиболее низкоуровневых средств, и лишь затем будет рассказано о прерываниях BIOS и MS-DOS. Это позволит подойти к изучению высокоуровневых средств, имея полное представление о том, как устроена дисковая система.

Прерывание INT 11h.

Прерывание базовой системы ввода/вывода INT 11h возвращает в регистре AX байт конфигурации системы, который можно использовать для определения количества НГМД и наличия НМД. Самый младший бит байта конфигурации (бит 0) - признак наличия в системе НМД. Если этот бит установлен в 1, то компьютер оборудован НМД, иначе дисковая система состоит только из накопителей на гибких магнитных дисках.

Биты 7 и 6 содержат информацию о количестве НГМД:

Содержимое бит 7 и 6 Количество установленных НГМД
00 1
01 2
10 3
11 4

Это прерывание лучше всего использовать для IBM PC/XT и IBM PC. Для IBM PC/AT необходимо исследовать содержимое CMOS-памяти. Займемся этим.

 

Порты контроллера НГМД.

Программа обращается к контроллеру для выполнения различных операций с помощью команд ввода/вывода. Для IBM PC и IBM PC/XT используются три порта с адресами 3F2h, 3F4h и 3F5h. В компьютерах IBM PC/AT дополнительно используются два порта с адресами 3F6h и 3F7h.

Порт 3F2h работает только на запись, это порт вывода. С его помощью можно выбирать для работы один из НГМД (одновременно можно работать только с одним НГМД), сбрасывать контроллер в исходное состояние, разрешать или запрещать прерывания от контроллера и работу схем прямого доступа к памяти, включать или выключать двигатели НГМД.

Приведем назначение отдельных бит этого порта:

Биты Назначение
0-1 Выбор НГМД. Компьютеры IBM PC/AT не используют бит 1, так как в них установлены только два НГМД
2 0 - сброс контроллера; 1 - разрешение работы контроллера
3 1 - разрешение прерываний и прямого доступа к памяти
4-7 Значение 1 в каждом разряде вызывает включение соответствующего двигателя НГМД. Для компьютеров IBM PC/AT биты 6-7 не используются

Порт 3F4h предназначен только для чтения. С его помощью можно получить байт основного состояния контроллера. Назначение отдельных бит приведено ниже:

Биты Назначение
0-3 Значение 1 говорит о том, что соответствующий НГМД занят, он выполняет операцию поиска. Для IBM PC/AT биты 2-3 не используются
4 Контроллер занят выполнением команды чтения или записи
5 0 - используется режим прямого доступа к памяти; 1 - режим прямого доступа к памяти не используется
6 Направление передачи данных: 0 - от процессора к контроллеру; 1 - от контроллера к процессору
7 Запрос на передачу данных - контроллер готов к записи или чтению данных

Порт 3F5h предназначен для записи или чтения данных. Он используется для всех операций.

Выполнение любой операции начинается с того, что программа посылает в этот порт байт кода операции, за которым следует один или несколько байт параметров. Количество байт параметров и их назначение зависит от кода операции (т. е. от первого байта). После выполнения операции программа считывает несколько байт результата для анализа результата выполнения операции.

Порт 3F7h работает на запись и чтение, он используется только в IBM PC/AT.

При записи в этот порт биты 0-1 определяют скорость передачи данных:

Биты Скорость передачи данных, Кбайт/с
00 500 (высокая плотность HD)
01 300 (двойная плотность DD)
10 250 (одинарная плотность SD)
11 Зарезервировано

Приведем назначение отдельных бит порта 3F7h при чтении из него:

Биты Назначение
0 1 - выбран НГМД 0
1 1 - выбран НГМД 1
2-5 Выбраны головки : бит 2 соответствует головке 0, бит 3 - головке 1 и т. д.
6 Переключатель записи
7 1 - признак замены дискеты

 

Сброс дисковой системы.

На входе: AH 00h
  DL Адрес устройства НМД или НГМД (0, 1, ..., 80h, 81h, ...)
На выходе: -  
Примечание:   PC, XT, AT, PS/2

Эта функция вызывает сброс и рекалибровку дискового контроллера (в ходе этой процедуры головки устанавливаются на нулевую дорожку). Если в байте адреса старший бит (бит 7) установлен в 1, выполняется сброс контроллера НМД.

Сброс рекомендуется выполнять после того, как произошла ошибка при выполнении других операций, таких как чтение или запись. После сброса можно попытаться повторить операцию.

Адрес устройства, равный 0, соответствует первому НГМД (A:), 1 - второму (B:) и т. д. Адреса 80h, 81h соответствуют первому и второму НМД, соответственно.

 

Чтение сектора.

На входе: AH 02h
  AL Количество секторов, которые нужно прочитать
  CH Номер дорожки
  CL Номер сектора
  DH Номер головки
  DL Адрес устройства НГМД или НМД (0, 1, ..., 80h, 81h, ...)
  ES:BX Адрес буфера для данных
На выходе: AH Состояние дисковода после завершения последней операции
  CF 1, если произошла ошибка, 0, если ошибки нет
Примечание:   PC, XT, AT, PS/2

Эта функция позволяет прочитать один или несколько секторов диска в буфер, находящийся в оперативной памяти. Для НМД номер дорожки и номер сектора задаются следующим образом: биты 5...0 регистра CX задают номер сектора, а биты 15...6 - номер дорожки. Перед чтением необходимо подготовить таблицу параметров НГМД или НМД.

 

Запись сектора.

На входе: AH 03h
  AL Количество секторов, которые нужно прочитать
  CH Номер дорожки
  CL Номер сектора
  DH Номер головки
  DL Адрес устройства НГМД или НМД (0, 1, ..., 80h, 81h, ...)
  ES:BX Адрес буфера для данных
На выходе: AH Состояние устройства после завершения последней операции
  CF 1, если произошла ошибка, 0, если ошибки нет
Примечание:   PC, XT, AT, PS/2

Функция записи секторов аналогична предыдущей, за исключением направления перемещения данных - данные записываются из буфера в один или несколько секторов диска. Необходимо отметить, что при работе с НГМД не для всякой BIOS будет выполняться ожидание перед выполнением операции записи, пока двигатель раскрутится до рабочей скорости. В результате программа может получить признак ошибки. Прежде чем делать вывод о причинах ошибки, следует сбросить контроллер НГМД функцией 00H и повторить операцию записи три раза.

 

Проверка сектора.

На входе: AH 04h
  AL Количество секторов, которые нужно проверить
  CH Номер дорожки
  CL Номер сектора
  DH Номер головки
  DL Адрес устройства НГМД или НМД (0, 1, ..., 80h, 81h, ...)
На выходе: AH Состояние устройства после завершения последней операции
  AL Количество проверенных секторов
  CF 1, если произошла ошибка,0, если ошибки нет
Примечание:   PC, XT, AT, PS/2

С помощью этой функции программа может убедиться, что указанные секторы существуют и их можно прочесть. Данные проверяются по методу циклического избыточного контроля (CRC). Адрес буфера не нужен, так как при проверке секторов чтение данных в оперативную память не выполняется.

 

Форматирование дорожки.

На входе: AH 05h
  AL Количество секторов, которые нужно создать на дорожке, или фактор чередования для НМД IBM PC/XT
  CH Номер дорожки
  CL Номер сектора
  DH Номер головки
  DL Адрес устройства НГМД или НМД (0, 1, ..., 80h, 81h, ...)
  ES:BX Адрес буфера формата, используется для НГМД и НМД, установленных в IBM PC/XT
На выходе: AH Состояние устройства после завершения последней операции
  CF 1, если произошла ошибка, 0, если ошибки нет
Примечание:   PC, XT, AT, PS/2

Функция форматирования предназначена для начального формирования структуры дорожки диска. Эта функция разрушает все данные, записанные на дорожке. С помощью функции 05h вы можете за один раз отформатировать только одну дорожку с указанным в регистре CH номером.

Для функции форматирования необходимо задать два параметра, на которых мы остановимся подробнее - фактор чередования и адрес буфера формата.

Что такое фактор чередования? Этот фактор определяет последовательность расположения секторов на дорожке. Секторы могут располагаться в порядке своих номеров, через один, через два и т. д. Способ размещения секторов определяется значением фактора чередования.

Некоторые программы, предназначенные для подготовки НМД к работе, требуют указания величины фактора чередования при выполнении низкоуровневого форматирования.

Для чего может понадобиться несмежное расположение секторов с последовательными номерами на дорожке диска? При последовательном расположении секторов может получиться так, что процессор не будет успевать обрабатывать смежные секторы за один проход дорожки.

Например, программа считывает последовательно второй и третий сектор. В момент времени, когда второй сектор уже считан, при быстром вращении диска к моменту начала чтения третьего сектора головки могут оказаться в середине третьего сектора. В результате диск совершит еще один оборот, прежде чем головки окажутся в начале третьего сектора. Поэтому если программа последовательно обращается к смежным секторам, может получиться так, что для чтения каждого сектора потребуется один оборот. Если же секторы будут расположены через один или через два, количество оборотов диска, нужных для обработки последовательности смежных секторов, будет значительно меньше. Для подбора оптимального фактора чередования при форматировании НМД можно использовать специальные программы или делать это методом проб и ошибок, задавая каждый раз новое значение фактора и проверяя быстродействие диска.

Займемся теперь буфером формата. Перед вызовом функции форматирования в регистры ES:BX следует записать полный адрес буфера формата. Перед форматированием дискеты этот буфер должен представлять из себя заполненный массив четырехбайтовых элементов - номер дорожки, головки, сектора и код размера сектора. Код размера сектора может иметь следующие значения:

Код Размер сектора в байтах
0 128
1 256
2 512
3 1024

Количество элементов в массиве должно быть равно количеству секторов, создаваемых на дорожке. То есть для каждого сектора буфер формата должен содержать один четырехбайтовый элемент. Для НМД буфер формата должен представлять из себя массив размером 512 байт. В начале этого массива для каждого сектора необходимо подготовить двухбайтовые элементы. Первый байт содержит признак - хороший это сектор (00) или плохой (80h), второй байт - номер сектора. Задавая последовательность номеров в буфере формата соответствующим образом, программа определяет фактор чередования.

 

Форматирование дорожки НМД.

На входе: AH 06h
  AL Фактор чередования
  CH Номер дорожки
  CL Номер сектора
  DH Номер головки
  DL Адрес НМД (80h, 81h, ...)
  ES:BX Адрес буфера формата
На выходе: AH Состояние устройства после завершения последней операции
  CF 1, если произошла ошибка, 0, если ошибки нет
Примечание:   PC, XT

Функция форматирования дорожки с кодом 6 предназначена только для НМД. При необходимости она устанавливает флаг плохого сектора. Буфер формата подготавливается таким же образом, что и для функции 05h.

 

Чтение секторов длинное (НМД).

На входе: AH 0Ah
  AL Количество секторов, которые нужно прочитать
  CH Номер дорожки
  CL Номер сектора
  DH Номер головки
  DL Адрес НМД (80h, 81h, ...)
  ES:BX Адрес буфера для данных
На выходе: AH Состояние устройства после завершения последней операции
  CF 1, если произошла ошибка, 0, если ошибки нет
Примечание:   PC, XT, AT, PS/2

Функция "Чтение секторов длинное" отличается от обычной функции чтения (с кодом 02h) тем, что она дополнительно считывает в буфер данных 4 байта кода коррекции ошибки (ECC).

 

Поиск дорожки (НМД).

На входе: AH 0Ch
  CH Номер дорожки
  CL Номер сектора
  DH Номер головки
  DL Адрес НМД (80h, 81h, ...)
На выходе: AH Состояние устройства после завершения последней операции
  CF 1, если произошла ошибка, 0, если ошибки нет
Примечание:   PC, XT, AT, PS/2

С помощью функции 0Ch программа может подвести головки к дорожке с заданным номером. Функции чтения и записи секторов не требуют предварительного поиска дорожки, они выполняют поиск самостоятельно.

 

Альтернативный сброс НМД.

На входе: AH 0Dh
  DL Адрес НМД (80h, 81h, ...)
На выходе: AH Состояние устройства после завершения последней операции
  CF 1, если произошла ошибка, 0, если ошибки нет
Примечание:   PC, XT, AT, PS/2

Вы можете использовать эту функцию для сброса контроллера вместо функции с кодом 00h. В отличие от функции сброса дисковой системы с кодом 00h, эта функция не влияет на контроллер НГМД, она сбрасывает только контроллер накопителя на жестком магнитном диске.

 

Чтение буфера сектора (НМД).

На входе: AH 0Eh
  ES:BX Адрес буфера для данных
  DL Адрес НМД (80h, 81h, ...)
На выходе: AH Состояние устройства после завершения последней операции
  CF 1, если произошла ошибка, 0, если ошибки нет
Примечание:   PC, XT

Контроллеры НМД, как правило, имеют внутренний буфер данных. С помощью функции 0Eh программа может прочитать содержимое этого буфера в оперативную память. Обращение к диску при этом не происходит. Функция чтения буфера используется в основном для диагностики контроллера.

 

Запись буфера сектора (НМД).

На входе: AH 0Fh
  ES:BX Адрес буфера для данных
  DL Адрес НМД (80h, 81h, ...)
На выходе: AH Состояние устройства после завершения последней операции
  CF 1, если произошла ошибка, 0, если ошибки нет
Примечание:   PC, XT

Функция полностью аналогична предыдущей, за исключением того, что происходит не чтение, а запись данных из оперативной памяти в буфер контроллера. Она может быть использована для инициализации содержимого буфера сектора перед форматированием диска функцией 05h прерывания INT 13h.

 

Определение состояния НМД.

На входе: AH 10h
  DL Адрес НМД (80h, 81h, ...)
На выходе: AH Состояние устройства после завершения последней операции
  CF 1, если произошла ошибка, 0, если ошибки нет
Примечание:   PC, XT, AT, PS/2

О готовности НМД можно судить по байту состояния, передаваемому функцией в регистре AH. Аналогичный байт возвращается в регистре AH функцией 01h.

 

Рекалибровка НМД.

На входе: AH 11h
  DL Адрес НМД (80h, 81h, ...)
На выходе: AH Состояние устройства после завершения последней операции
  CF 1, если произошла ошибка, 0, если ошибки нет
Примечание:   PC, XT, AT, PS/2

Вызов функции приводит к позиционированию головок выбранного НМД на нулевую дорожку. Дополнительно в регистре AH возвращается байт состояния устройства.

 

Проверка НМД.

На входе: AH 13h
  DL Адрес НМД (80h, 81h, ...)
На выходе: AH Состояние устройства после завершения последней операции
  CF 1, если произошла ошибка, 0, если ошибки нет
Примечание:   PC, XT

Функция используется для запуска внутренней диагностики контроллера.

 

Проверка контроллера НМД.

На входе: AH 14h
На выходе: AH Состояние устройства после завершения последней операции
  CF 1, если произошла ошибка, 0, если ошибки нет
Примечание:   PC, XT, AT, PS/2

Функция запускает внутреннюю диагностику контроллера.

 

Проверка замены диска.

На входе: AH 16h
  DL Адрес устройства НГМД или НМД (0, 1, ..., 80h, 81h, ...)
На выходе: AH Признак замены носителя данных: 0 - замены не было; 6 - носитель данных был заменен
Примечание:   AT, PS/2

В некоторых случаях замена носителя данных (дискеты или сменного магнитного диска) нежелательна до выполнения определенных действий (мы говорили об этом при обсуждении драйверов дисковых устройств). С помощью этой функции программа может убедиться в том, что в дисковом устройстве установлен все тот же носитель данных, что и в начале цикла операций. Если носитель данных был по ошибке заменен раньше времени, программа может потребовать установить старый носитель для завершения работы с ним.

 

Установка типа дискеты.

На входе: AH 17h
  AL Тип дискеты
  DL Адрес НГМД (0, 1, ...)
На выходе: AH Состояние устройства после завершения последней операции
  CF 1, если произошла ошибка, 0, если ошибки нет
Примечание:   AT, PS/2

Если перед вызовом этой функции был установлен флаг замены дискеты, то он сбрасывается. Дополнительно BIOS устанавливает скорость передачи данных через контроллер НГМД в зависимости от типа дискеты.

 

Парковка головок НМД.

На входе: AH 19h
  DL Адрес НМД (80h, 81h, ...)
На выходе: AH Состояние устройства после завершения последней операции
  CF 1, если произошла ошибка, 0, если ошибки нет
Примечание:   PS/2

Парковка головок - это их установка в нерабочую область, т. е. на нерабочую дорожку. Такую операцию обычно выполняют перед транспортировкой компьютера для исключения повреждения НМД. Современные НМД выполняют парковку головок автоматически.

 

Таблица разделов и логические диски.

Персональный компьютер обычно комплектуется одним или двумя НМД. Однако операционная система позволяет вам разбивать НМД на части, причем каждая часть будет рассматриваться MS-DOS как отдельный, "логический" диск.

Существует несколько причин, по которым может быть полезно разделение большого диска на части:

· в случае повреждения логического диска пропадает только та информация, которая находилась на этом логическом диске;

· реорганизация и выгрузка диска маленького размера выполняется быстрее, чем большого;

· на одном диске может находиться несколько различных операционных систем, расположенных в разных разделах. В ходе начальной загрузки вы можете указать раздел диска, из которого должна загружаться нужная вам в данный момент операционная система.

По своей внутренней структуре логический диск полностью соответствует дискете, поэтому сначала мы изучим логическую структуру жесткого диска, затем сделаем некоторые замечания, касающиеся дискет.

 

Главная загрузочная запись.

Самый первый сектор жесткого диска (сектор 1, дорожка 0, головка 0) содержит так называемую главную загрузочную запись (Master Boot Record). Эта запись занимает не весь сектор, а только его начальную часть.

Сама по себе главная загрузочная запись является программой. Эта программа во время начальной загрузки операционной системы с НМД помещается по адресу 7C00h:0000h, после чего ей передается управление. Загрузочная запись продолжает процесс загрузки операционной системы.

 

Таблица разделов диска.

В конце самого первого сектора жесткого диска располагается таблица разделов диска (Partition Table). Эта таблица содержит четыре элемента, описывающих до четырех разделов диска. В последних двух байтах сектора находится значение 55AAh. Это признак таблицы разделов (сигнатура таблицы разделов).

Элемент таблицы разделов диска представляет собой структуру размером 16 байт, соответствующую части диска, называемой разделом. В структуре располагается информация о расположении и размере раздела в секторах, а также о назначении раздела.

Разделы диска бывают активными или неактивными. Активный раздел может использоваться для загрузки операционной системы. Заметим, что диск может содержать одновременно несколько активных разделов, которые могут принадлежать разным операционным системам.

Приведем формат первого сектора жесткого диска:

Смещение, байт Размер, байт Описание
0 1BEh Загрузочная запись
1BEh 10H Элемент таблицы разделов диска
1CEh 10H Элемент таблицы разделов диска
1DEh 10H Элемент таблицы разделов диска
1EEh 10H Элемент таблицы разделов диска
1FEh 2 Признак таблицы разделов - значение 55AAh

Все элементы таблицы разделов диска имеют одинаковый формат:

Смещение, байт Размер, байт Описание
0 1 Признак активного раздела: 0 - раздел неактивный; 80h - раздел активный
1 1 Номер головки для начального сектора раздела
2 2 Номер сектора и дорожки для начального сектора раздела в формате функции чтения сектора INT 13h
4 1 Код системы: 0 - неизвестная система; 1, 4 - MS-DOS; 5 - расширенный раздел MS-DOS
5 1 Номер головки для последнего сектора раздела
6 2 Номер сектора и дорожки для последнего сектора раздела в формате функции чтения сектора INT 13h
8 4 Относительный номер сектора начала раздела
12 4 Размер раздела в секторах

 

Загрузочная запись.

В самом первом секторе активного раздела расположена загрузочная запись (Boot Record), которую не следует путать с главной загрузочной записью (Master Boot Record). Загрузочная запись считывается в оперативную память главной загрузочной записью, после чего ей передается управление. Загрузочная запись и выполняет загрузку операционной системы.

 

Загрузочная запись .

Самый первый сектор логического диска (и самый первый сектор на системной дискете) занимает загрузочная запись (Boot Record). Эта запись считывается из активного раздела диска программой главной загрузочной записи (Master Boot Record) и запускается на выполнение. Задача загрузочной записи - выполнить загрузку операционной системы. Каждый тип операционной системы имеет свою загрузочную запись. Даже для разных версий одной и той же операционной системы программа загрузки может выполнять различные действия.

Кроме программы начальной загрузки операционной системы в загрузочной записи находятся параметры, описывающие характеристики данного логического диска. Все эти параметры располагаются в самом начале сектора, в его так называемой форматированной области. Формат этой области изменился в версии 4.0 операционной системы MS-DOS.

 

Формат загрузочной записи.

Сначала приведем формат загрузочной записи для версий MS-DOS, более ранних, чем 4.0.

Смещение Размер Содержимое
0 3 Команда JMP xxxx - ближний переход на программу начальной загрузки
3 8 Название фирмы-изготовителя операционной системы и версия, например: "IBM 4.0"
11 13 Блок параметров BIOS (BPB)
24 2 Количество секторов на дорожке
26 2 Количество головок (поверхностей диска)
28 2 Количество скрытых секторов, эти секторы могут использоваться для схемы разделения физического диска на разделы и логические диски

В самом начале загрузочного сектора располагается команда внутрисегментного перехода JMP. Она нужна для обхода форматированной зоны сектора и передачи управления загрузочной программе, располагающейся со смещением 30. Название фирмы-изготовителя не используется операционной системой.

Со смещением 11 располагается BPB - блок параметров BIOS , о котором мы уже говорили в разделах книги, посвященных драйверам. Этот блок содержит некоторые характеристики логического диска, о которых мы будем говорить немного позже. Он активно используется дисковыми драйверами. Для MS-DOS версий до 4.0 блок BPB имеет следующий формат:

Смещение, байт Размер, байт Имя поля Описание
0 2 sect_siz Количество байт в одном секторе диска
2 1 clustsiz Количество секторов в одном кластере
3 2 res_sect Количество зарезервированных секторов
5 1 fat_cnt Количество таблиц FAT
6 2 root_siz Максимальное количество дескрипторов файлов в корневом каталоге диска
8 2 tot_sect Общее количество секторов на носителе данных (в разделе MS-DOS)
10 1 media Байт-описатель среды носителя данных
11 2 fat_size Количество секторов, занимаемых одной копией FAT

Поля загрузочного сектора со смещениями 24 и 26 содержат, соответственно, количество секторов на дорожке и количество головок в НМД. Поле со смещением 28 содержит количество "скрытых" секторов, которые не принадлежат ни одному логическому диску. Эти секторы могут содержать основную или вторичные таблицы разделов диска.

Для современных версий MS-DOS загрузочный сектор имеет другой формат:

Смещение Размер Содержимое
0 3 Команда JMP xxxx - ближний переход на программу начальной загрузки
3 8 Название фирмы-изготовителя операционной системы и версия
11 25 Extended BPB - расширенный блок параметров BIOS
36 1 Физический номер устройства (0 -НГМД, 80h -НМД)
37 1 Зарезервировано
38 1 Символ ')' - признак расширенной загрузочной записи
39 4 Серийный номер диска (Volume Serial Number), создается во время форматирования диска
43 11 Метка диска (Volume Label)
54 8 Зарезервировано, обычно содержит запись типа 'FAT12 ', которая идентифицирует формат таблицы размещения файлов FAT

Первые два поля в загрузочном секторе аналогичны описанным раньше. Поле со смещением 38 всегда содержит символ ')'. Этот символ означает, что используется формат расширенной загрузочной записи.

Серийный номер диска формируется во время форматирования диска на основе даты и времени форматирования. Это поле может быть использовано для определения факта замены дискеты.

Метка диска формируется при форматировании и может быть изменена командой LABEL операционной системы MS-DOS. Одновременно метка диска помещается в корневой каталог.

 

Логический номер сектора.

MS-DOS предоставляет программе возможность работы с так называемыми логическими номерами секторов. Это номера секторов внутри логического диска.

Вы знаете, что для адресации сектора при помощи функций BIOS необходимо указывать номер дорожки, номер головки и номер сектора на дорожке. MS-DOS организует "сквозную" нумерацию секторов, при которой каждому сектору логического диска присваивается свой номер. Порядок нумерации выбран таким, что при последовательном увеличении номера сектора вначале увеличивается номер головки, затем номер дорожки. Это сделано для сокращения перемещений блока головок при обращении к последовательным логическим номерам секторов.

Пусть, например, у нас есть дискета с девятью секторами на дорожке. Сектор с логическим номером, равным 1, расположен на нулевой дорожке и для обращения к нему используется нулевая головка. Это самый первый сектор на дорожке, он имеет номер 1. Следующий сектор на нулевой дорожке имеет логический номер 2, последний сектор на нулевой дорожке имеет логический номер 9. Сектор с логическим номером 10 расположен также на нулевой дорожке. Это тоже самый первый сектор на дорожке, но теперь для доступа к нему используется головка с номером 1. И так далее, по мере увеличения логического номера сектора изменяются номера головок и дорожек.

 

Таблица размещения файлов.

Сразу вслед за загрузочным сектором на логическом диске находятся секторы, содержащие таблицу размещения файлов FAT (File Allocation Table). Для того, чтобы назначение этой таблицы стало более понятным, вспомним, как организовано хранение информации на различных носителях данных.

 

Кластеры.

Операционная система ОС ЕС для ЭВМ ряда ЕС позволяла задать начальное количество цилиндров диска для размещения набора данных и размер области диска, которая может быть использована для этого набора дополнительно. Если при записи в файл все распределенное для файла место на диске окажется исчерпанным, программа завершится аварийно, даже если на диске еще есть свободные цилиндры.

Операционная система MS-DOS использует дисковое пространство другим способом.

При создании файла для него не задается начальное распределение памяти в дорожках или секторах. По мере того как файл увеличивается в размерах, операционная система распределяет этому файлу секторы из числа свободных, не используемых другими файлами. При этом файл не обязательно располагается в смежных областях диска, он может быть разбросан по разным дорожкам и секторам.

Очевидно, что в этом случае операционная система должна вести учет используемых секторов диска. Для каждого файла она должна хранить где-то информацию о распределении файлам секторов диска. В операционной системе MS-DOS для хранения этой информации используется таблица размещения файлов.

Весь диск разбивается операционной системой на участки одинакового размера, называемые кластерами. Кластер может содержать несколько секторов. Для каждого кластера в таблице FAT есть своя индивидуальная ячейка, в которой хранится информация об использовании данного кластера. Другими словами, таблица размещения файлов - это массив, содержащий информацию о кластерах. Размер этого массива определяется общим количеством кластеров на логическом диске.

 

Содержимое таблицы FAT.

Что же хранится в таблице размещения файлов?

Если ответить на этот вопрос коротко, то в FAT находятся списки кластеров, распределенных файлам. Все свободные кластеры отмечены нулями.

Таким образом, если файл занимает несколько кластеров, то эти кластеры связаны в список. При этом элементы таблицы FAT содержат номера следующих используемых данным файлом кластеров. Конец списка отмечен в таблице специальным значением. Номер первого кластера, распределенного файлу, хранится в элементе каталога, описывающего данный файл.

Программа format.com, предназначенная для форматирования диска и некоторые специальные программы аналогичного назначения проверяют диск на предмет наличия дефектных областей. Кластеры, которые находятся в этих дефектных областях, отмечаются в FAT как плохие и не используются операционной системой.

Итак, FAT - массив информации об использовании кластеров диска, содержит списки кластеров, распределенных файлам. Номера начальных кластеров файлов хранятся в каталогах, о которых мы будем говорить в разделе "Файлы и каталоги".

В каталоге кроме всего прочего указаны номера первых кластеров, распределенных этим файлам (соответственно 11 и 12). В своей одиннадцатой ячейке таблица FAT содержит число 17 - номер второго кластера, распределенного файлу autoexec.bat. Ячейка с номером 17 содержит число 18. Это номер третьего кластера, принадлежащего файлу autoexec.bat. Последняя ячейка, которая соответствует последнему кластеру, распределенному этому файлу, содержит специальное значение - FFFF.

Таким образом, файл autoexec.bat занимает три несмежных кластера с номерами 11, 17 и 18. Что же касается файла config.sys , то в нашем примере для него отведено два смежных кластера с номерами 12 и 13.

 

Два формата таблицы FAT.

Таблица FAT может иметь 12- или 16-битовый формат. При этом в таблице для хранения информации об одном кластере диска используется, соответственно, 12 и 16 бит.

12-битовый формат удобен для дискет с небольшим количеством секторов - вся таблица размещения файлов помещается в одном секторе.

Если размер диска такой, что для представления всех секторов недостаточно двенадцати разрядов, можно увеличить размер кластера, например до восьми секторов.

Однако большой размер кластера приводит к неэффективному использованию дискового пространства. Это происходит из-за того что минимальный фрагмент дисковой памяти, выделяемый файлу, имеет слишком большой размер. Даже для файла размером 1 байт выделяется целый кластер. Значит, если размер кластера составляет 8 секторов, то для хранения одного байта будет использовано 4 Кбайт дисковой памяти (размер кластера составляет 512 байт).

При использовании 16-битового формата таблицы FAT операционная система MS-DOS может работать с диском, который имеет размер более 32 Мбайт.

 

Идентификация кластеров.

Первый байт таблицы FAT называется "Описатель среды" (Media Descriptor). Он имеет такое же значение, как и байт-описатель среды, находящийся в загрузочном секторе логического диска.

Следующие 5 байт для 12-битового формата или 7 байт для 16-битового формат всегда содержат значение 0FFh.

Остальная часть таблицы FAT состоит из 12- или 16-битовых ячеек. Каждая ячейка соответствует одному кластеру диска. Эти ячейки могут содержать следующие значения:

FAT12 FAT16 Что означает
000h 0000h Свободный кластер
FF0h - FF6h FFF0h - FFF6h Зарезервированный кластер
FF7h FFF7h Плохой кластер
FF8h - FFFh FFF8h - FFFFh Последний кластер в списке
002h - FEFh 0002h - FFEFh Номер следующего кластера в списке

Чтение таблицы FAT.

Непосредственный доступ к FAT может потребоваться вам для организации сканирования каталогов при поиске файлов, для чтения каталогов как файлов, для организации защиты информации от несанкционированного копирования. Общая схема использования FAT такая:

· Читаем таблицу FAT в память

Обычно FAT располагается сразу после загрузочного сектора (логический сектор с номером 1). Для точного определения начального сектора FAT следует прочитать в память загрузочный сектор и проанализировать содержимое блока параметров BIOS. В поле ressecs записано количество зарезервированных секторов, которые располагаются перед FAT. Поле fatsize содержит размер FAT в секторах. Кроме того, следует учитывать, что на диске может находиться несколько копий FAT. Операционная система использует только первую копию, но обновляет вторую. Другие копии FAT нужны для утилит восстановления содержимого диска, таких как scandisk.exe . Количество копий FAT находится в поле fatcnt загрузочного сектора.

· Получаем номер первого кластера файла, для которого необходимо определить его расположение на диске

· Используем номер первого кластера как индекс в таблице FAT для извлечения номера следующего кластера

· Повторяем предыдущую процедуру до тех пор, пока извлеченное из FAT значение не будет соответствовать концу файла

Процедура извлечения номера кластера из FAT зависит от формата таблицы размещения файлов.

16-битовую таблицу FAT можно представить как массив 16-битовых чисел. Для определения номера следующего кластера вам надо просто извлечь 16-битовое значение из FAT, использовав в качестве индекса номер предыдущего кластера.

Для 12-битовой таблицы FAT процедура значительно сложнее. Необходимо выполнить следующие действия:

· умножить номер начального кластера на 3;

· разделить результат на 2 (так как каждый элемент таблицы имеет длину 1,5 байта);

· прочитать 16-битовое слово из FAT , используя в качестве смещения значение, полученное после деления на 2;

· если номер начального кластера четный, на выбранное из FAT слово надо наложить маску 0FFFh, оставив младшие 12 бит, если же номер начального кластера нечетный, выбранное из FAT значение необходимо сдвинуть вправо на 4 бита, оставив старшие 12 бит;

· полученный результат - это номер следующего кластера в цепочке, при этом значение 0FFFh (или другое в диапазоне от 0FF8h до 0FFFh) соответствует концу цепочки кластеров.

Используя описанные выше процедуры просмотра FAT , вы сможете для каждого файла определить цепочку занимаемых им кластеров. Для чтения файла при помощи прерывания INT 25h вам будет нужно установить соответствие между номерами кластеров и номерами секторов, в которых располагаются эти кластеры. Для того чтобы это сделать, необходимо определить расположение и размер корневого каталога. Поэтому следующий раздел книги будет посвящен каталогам и файлам. Там же будут приведены примеры программ для работы с FAT.

 

Файлы и каталоги.

Вы, конечно, знаете, что файловая система MS-DOS имеет древовидную структуру. В корневом каталоге располагаются 32-байтовые элементы, которые содержат информацию о файлах и других каталогах. Для чтения корневого каталога необходимо определить его расположение и размер.

 

Дескрипторы файлов.

Как мы уже говорили, любой каталог содержит 32-байтовые элементы - дескрипторы, описывающие файлы и другие каталоги. Приведем формат дескриптора:

Смещение Размер Содержимое
0 8 Имя файла или каталога, выровненное на левую границу и дополненное пробелами
8 3 Расширение имени файла, выровненное на левую границу и дополненное пробелами
11 1 Байт атрибутов файла
12 10 Зарезервировано
22 2 Время создания файла или время его последней модификации
24 2 Дата создания файла или дата его последней модификации
26 2 Номер первого кластера, распределенного файлу
28 4 Размер файла в байтах

В любом каталоге, кроме корневого, два первых дескриптора имеют специальное назначение. Первый дескриптор содержит в поле имени строку: ".  ". Этот дескриптор указывает на содержащий его каталог. То есть каталог имеет ссылку сам на себя.

Второй специальный дескриптор содержит в поле имени строку: ".. ". Этот дескриптор указывает на каталог более высокого уровня. Если в поле номера первого занимаемого кластера для дескриптора с именем ".. " находится нулевое значение, это означает, что данный каталог содержится в корневом каталоге.

Таким образом, в древовидной структуре каталогов имеются ссылки как в прямом, так и в обратном направлении. Эти ссылки можно использовать для проверки сохранности структуры каталогов файловой системы.

 

Атрибуты файлов.

Байт атрибутов является принадлежностью каждого файла. Биты этого байта имеют следующие значения:

Бит Описание
0 Файл предназначен только для чтения.В этот файл нельзя писать и его нельзя стирать
1 Скрытый файл.Этот файл не будет появляться в списке файлов, создаваемом командой DIR
2 Системный файл. Этот бит обычно установлен в файлах, являющихся составной частью операционной системы
3 Данный дескриптор описывает метку диска.Для этого дескриптора поле имени файла и поле расширения имени файла должны рассматриваться как одно поле длиной 11 байт. Это поле содержит метку диска
4 Дескриптор описывает файл, являющийся подкаталогом данного каталога
5 Флаг архивации.Если этот бит установлен в 1, то данный файл не был выгружен утилитой архивации
6-7 Зарезервированы

Обычно файлы имеют следующие атрибуты:

Атрибут Описание
0 Обычные файлы (тексты программ, загрузочные модули, пакетные файлы)
7 Только читаемые, скрытые, системные файлы. Такая комбинация битов байта атрибутов используется для файлов операционной системы io.sys , msdos.sys
8 Метка тома. Дескриптор метки тома может находиться только в корневом каталоге логического диска
10h Дескриптор, описывающий каталог
20h Обычный файл, который не был выгружен программами backup.exe или xcopy.exe

 

Длина файла.

Поле длины в дескрипторе содержит точную длину файла в байтах. Для каталогов в поле длины записано нулевое значение. Вы не можете работать с каталогом средствами MS-DOS, как с обычным файлом. Единственный способ прочитать каталог как файл - использование таблицы FAT для определения цепочки занимаемых каталогом кластеров и чтение секторов, соответствующих этим кластерам при помощи прерывания INT 25h.



Список литературы.

1. Фролов А.В., Фролов Г.В. Библиотека системного программиста. Т. 1. Часть 1, 2, 3. Операционная система MS-DOS. М: ДИАЛОГ-МИФИ, 1991, 1993.

2. Фролов А.В., Фролов Г.В. Библиотека системного программиста. Т. 2. Аппаратное обеспечение IBM PC. Часть 1, 2. М: ДИАЛОГ-МИФИ, 1992.

3. Фролов А.В., Фролов Г.В. Библиотека системного программиста. Т. 19, MS-DOS для программиста. Часть 2, М.: ДИАЛОГ-МИФИ, 1995.

 

Оглавление.

Введение.

1. Глава 1. Обзор дисковых устройств.

2. Глава 2. Физические аспекты работы с дисками.

3. Глава 3. Работа с дисками на физическом уровне.

3.1. Определение типа компьютера.

3.2. Прерывание INT 11h.

3.3. Анализ содержимого CMOS-памяти.

3.4. Таблицы параметров НМД и НГМД.

4. Глава 4. Программирование контроллера НГМД.

4.1. Порты контроллера НГМД.

4.2. Команды для контроллера НГМД.

4.3. Использование команд контроллера НГМД.

4.4. Немного о контроллере прямого доступа к памяти.

5. Глава 5. Функции BIOS для работы с дисками.

6. Глава 6. Работа с дисками по средствам MS-DOS.

6.1. Таблица разделов и логические диски.

6.2. Главная загрузочная запись.

6.3. Таблица разделов диска.

6.4. Загрузочная запись.

6.5. Загрузка операционной системы.

6.6. Поля элемента таблицы раздела диска.

6.7. Первичный и расширенный раздел.

6.8. Загрузочная запись.

6.9. Формат загрузочной записи.

6.10. Расширенный блок параметров BIOS.

6.11. Логический номер сектора.

6.12. Прерывания INT 25h и INT 26h.

6.13. Таблица размещения файлов.

6.14. Последовательный и прямой доступ.

6.15. Кластеры.

6.16. Содержимое таблицы FAT.

6.17. Два формата таблицы FAT.

6.18. Определение формата таблицы FAT.

6.19. Идентификация кластеров.

6.20. Чтение таблицы FAT.



Введение.

В распоряжении программиста имеются средства разного уровня, предназначенные для работы с дисковой системой в среде MS-DOS.

Во-первых, любая программа может обращаться непосредственно к аппаратуре контроллера жесткого диска или контроллера накопителя на гибких магнитных дисках. Это самый низкий уровень, применение которого оправдано далеко не всегда. Более того, во многих источниках настоятельно рекомендуется не работать с контроллером на уровне портов, если точно не известно, зачем это нужно. Большинство задач решается с применением функций MS-DOS или BIOS (даже такие нетрадиционные задачи, как защита от несанкционированного копирования). Однако иногда программист бывает вынужден использовать самый низкий уровень, рискуя потерять совместимость с многочисленными типами дисковых контроллеров.

Во-вторых, программа MS-DOS может работать с дисками при помощи прерывания BIOS. В работе будут рассмотрены различные функции прерывания INT 13h, предназначенного для выполнения операций чтения, записи и форматирования. Использование функций прерывания INT 13h намного предпочтительнее, чем непосредственное программирование контроллера, так как BIOS скрывает особенности аппаратной реализации контроллера.

В-третьих, программа может обращаться к прерываниям MS-DOS, специально предназначенным для доступа к дисковой системе. Сервис, предоставляемый этими прерываниями также можно разделить на низко- и высокоуровневый, поэтому у программиста всегда есть выбор.

Выбирая средства обращения к дисковой системе, программист должен вначале рассмотреть возможность использования наиболее высокоуровневых документированных средств, таких как прерывания MS-DOS. И лишь затем имеет смысл обратиться к функциям BIOS или к программированию портов контроллера.

Несмотря на все сказанное выше, повествование о средствах работы с дисковой системой будет вестись в обратном порядке. Вначале будет рассказано об использовании наиболее низкоуровневых средств, и лишь затем будет рассказано о прерываниях BIOS и MS-DOS. Это позволит подойти к изучению высокоуровневых средств, имея полное представление о том, как устроена дисковая система.

Глава 1. Обзор дисковых устройств.

Первые персональные компьютеры типа IBM PC не имели жесткого диска ("винчестера", или, по отечественной терминологии, накопителя на жестком магнитном диске - НМД). Они были оборудованы двумя флоппи-дисками (накопителями на гибком магнитном диске - НГМД), которые и представляли собой дисковую систему. В таких компьютерах установлены, как правило, два накопителя для флоппи-дисков (дискет).

Эти накопители подключены к контроллеру - специальному устройству, выполняющему функции управления. Контроллер обычно выполнен в виде платы и вставлен в разъем системной шины, который находится на основной плате компьютера.

В компьютере IBM PC использовали дискеты диаметром 5,25". Сейчас пользователи практически отказались от громоздких дискет диаметром 5,25", отдавая предпочтение более компактным дискетам диаметром 3,5". Компьютер IBM XT имел один или два НГМД для дискет диаметром 5,25" и, как правило, один НМД емкостью 20 Мбайт. Все дисководы подключались к одному общему контроллеру. Модель IBM AT и компьютеры более высокого класса могут иметь несколько дисковых контроллеров, два НГМД с различным диаметром (3,5" и 5,25") и несколько НМД.

Пожалуй, самая интересная разновидность современных дисковых накопителей - оптические, или лазерные. В настоящее время существует несколько типов оптических дисковых накопителей. Это устройство чтения компакт-дисков CD-ROM , устройство записи CD Recordable , накопители WORM и магнитооптические накопители.

Диски CD-ROM (Compact-Disk, Read-Only Memory) - это диски, которые по своему формату и технологии записи информации напоминают звуковые компакт-диски. Они имеют диаметр 120 мм и могут содержать порядка 800 Мбайт информации. Эта информация записывается один раз и впоследствии может только читаться, как из постоянного запоминающего устройства.

Диски CD Recordable внешне очень похожи на диски CD-ROM , однако с помощью специального устройства пользователь может записать на него свою информацию. При необходимости можно на один и тот же диск дозаписывать новые данные. Диск CD Recordable можно прочитать с помощью обычного устройства чтения компакт-дисков CD-ROM.

WORM -диски (Write Once, Read Many) предназначены для однократной записи и многократного считывания данных. Эти диски, как и CD Recordable , наилучшим образом подходят для архивного хранения информации, например, содержимого обширных баз данных.

Магнитооптические накопители могут многократно записывать информацию на один и тот же носитель (как обычные магнитные диски). Это одни из самых дорогостоящих дисковых накопителей. Их производительность сравнима с производительностью обычных жестких дисков.

Основной недостаток лазерных накопителей (кроме магнитооптических) - относительно невысокое быстродействие по сравнению с традиционными накопителями на жестких дисках. Однако этот недостаток постепенно преодолевается.

Дата: 2019-05-28, просмотров: 236.