ТРИ СОСТАВНЫЕ ЧАСТИ ПРАКТИЧЕСКОЙ ДИАЛЕКТИКИ ТВОРЧЕСТВА
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Содержание.

Содержание........................................................................................................................................ 1

1. ВВЕДЕНИЕ................................................................................................................................... 2

2. ТРИ СОСТАВНЫЕ ЧАСТИ ПРАКТИЧЕСКОЙ ДИАЛЕКТИКИ ТВОРЧЕСТВА............... 3

2.1 СУЩНОСТЬ СИСТЕМНОГО ПОДХОДА........................................................................... 4

Что есть система.......................................................................................................................... 4

Зачем нужен системный подход............................................................................................... 7

Функционально-структурный подход..................................................................................... 8

Философская сущность системного подхода........................................................................ 10

2.2 ЗАКОНЫ И ЗАКОНОМЕРНОСТИ РАЗВИТИЯ ТЕХНИКИ.......................................... 11

Фундаментальные основы инженерного искусства............................................................. 11

Существуют ли объективные законы развития техники?................................................... 12

Законы и закономерности развития антропогенных систем............................................... 17

2.3 ПРИНЯТИЕ РЕШЕНИЙ НА ОСНОВЕ СИСТЕМНОГО ПОДХОДА........................... 23

Вам нужно принять решение.................................................................................................. 23

Принятие решений. Что это такое.......................................................................................... 24

Обучают ли методам принятия решений............................................................................... 27

Как думать и над чем думать................................................................................................... 27

Общие системообразующие методы, используемые в процессе принятия решений....... 27

Методы направленного поиска решения инженерных задач.............................................. 31

Что общего между различным................................................................................................. 33

О "человеческом факторе " в принятии решений................................................................. 34

3. ЗАКЛЮЧЕНИЕ........................................................................................................................... 35

Литература....................................................................................................................................... 36



ВВЕДЕНИЕ

 

Человечество переступило порог третьего тысячелетия. Наше общество связывает свои надежды с ожидаемыми переменами. В этих условиях недопустимо оставаться на позициях формализма и догматизма, которые в инженерной, особенно научной и учебной деятельности, нивелируют способности и оставляют в тени творческую индивидуальность личности.

В качестве проверочного теста (обоснования) выделим три вопроса.

Вопрос 1. Мы все слышали о системном подходе и системотехнике. Что вы знаете о их сущности и возможностях?

Вопрос 2. Окружающий мир условно можно разделить на два: естественный, где господствуют законы природы и искусственный - антропогенный мир созданный человеком, частью которого является мир техники. Законы естественного мира глубоко изучаются в курсах физики, биологии и др. Но знакомы ли Вы с законами и закономерностями развития антропогенного мира, как используете их в своей инженерной, учебной и исследовательской деятельности.

Вопрос 3. Какие методы принятия решений Вам известны? Обучали ли Вас методам принятия решений?

Мы считаем, что специалист, не имеющий основательной методологической подготовки, не может должным образом ориентироваться в непрерывно обновляющемся многообразии мира техники, даже в относительно узкой "своей" специальной области, не говоря уже о межотраслевых задачах. Для полной деятельности совершенно не достаточно иметь даже очень хорошую, но относительно узкую подготовку. Необходимо сформировать свою мировоззренческую позицию, связанную с научным и инженерным творчеством в Вашей области деятельности.

Существует много подходов к описанию процесса творчества. В одних описывается деятельность выдающихся ученых, педагогов, мыслителей, предпринимателей, артистов и других творческих личностей. Рассказывается творческая лаборатория деятельности, но нет выхода на обобщения, позволяющие говорить об общей методологии творчества. Проблемы творчества не связываются с системным подходом и законами развития систем.

В других подходах рассматриваются проблемы методологии творчества при изобретательстве и проектировании систем. Системный подход в них явно не используется, входит как-то интуитивно и подменяется другими понятиями.

В ряде работ по системному подходу не рассматриваются законы развития и функционирования систем.

Много работ посвящено методам принятия решений, но они не базируются на идеях системности и законах развития систем.

Есть рад работ, посвященных методам создания новых технических решений. Но предлагаемая в них методология не содержит взаимосвязи системного подхода, законов развития систем и методов принятия решений.

Ряд работ посвящен анализу творческой деятельности, психологии творчества, влиянию человеческого фактора на принятие решений, но без связи с системным подходом, и закономерностями развития систем.

Все это многообразие творческих подходов укладывается и обнимается предложенной концепцией творчества.

Основной задачей работы является представление творческого процесса как связь трех неразрывных составляющих: системный подход – законы развития – принятие решений в соответствии с положениями материалистической диалектики.

В рамках этой концепции:

1) Рассмотрим системный подход в его функционально-структурной концепции в связи с объективными законами и закономерностями антропогенного мира.

2) С позиции системного подхода рассмотрим общие философские положения теории принятия решений, а так же рассмотрим разнообразные методы решений этой важной проблемы различными авторами. 

Сегодня без ускорения научно-технического прогресса наше общество не решит своих экономических и социальных проблем. Особое внимание следует уделять анализу проблем на стыке разных наук - естественных, технических и общественных. Поэтому необходимо в общей взаимосвязи, на основе системного подхода овладение законами развития технических наук, эволюции антропогенного мира.

Необходимо привлечь внимание к формированию мировоззренческих позиций инженеров, научных работников и преподавателей. Каждому из нас необходимо овладеть искусством системного подхода, использовать объективные законы и закономерности развития техники и на их основе принимать практические решения.

 

СУЩНОСТЬ СИСТЕМНОГО ПОДХОДА

Первоочередными фундаментальными понятиями (терминами, определениями), через которые мы постараемся выразить суть системного подхода, являются «система», «функция системы», «структура системы», «внешняя среда», «связи», «ограничения», «критерии», «цель», «управление». В свою очередь каждое из этих понятий опирается на другие вспомогательные понятия.

Мы рассматриваем системный подход как определенную практическую методологию, с помощью которой инженер, ученый, педагог активно добивается желаемой цели в мире техники, науки, образования. В этой связи «сердцевину» системного подхода составляет функционально структурный подход.

 

Что есть система.

Система - это полный, целостный набор элементов, взаимосвязанных между собой так, чтобы могла реализоваться функция системы.

Отличительным (главным) свойством системы является то, что ни один из ее элементов не имеет присущих ей свойств, не может выполнять ту функцию, которую она осуществляет. Ведь в против­ном случае другие элементы не нужны! (Если и без них можно осуществить желаемую функцию).

В дальнейшем необходимо рассмотреть, очевидно, и связи системы с внешней средой (не в вакууме же она действует). Иначе без связи с внешней средой мы нарушим реальную картину целостного мира, исказим условия существования и функцио­нирования рассматриваемой системы (возможности существования). Часто это условие адаптации приспособление системы к внешней среде.

Система проявляется как целостный материальный объект, представляющий собой закономерно обусловленную совокупность функционально взаимодействующих элементов.

Основные свойства системы проявляются через целостность взаимодействие и взаимозависимость процессов преобразования вещества, энергии и информации, через ее функциональность структуру, связи, внешнюю среду и др.

 

С чего начинается система.

 Философы учат, что все начинается с потребности.

Исследование потребности состоит в том, что прежде, чем разрабатывать новую систему, необходимо установить – нужна ли она? На этом этапе ставятся и решаются следующие вопросы:

- удовлетворяет ли проект новую потребность;

- удовлетворяет ли его эффективность, стоимость качество и др.?

Рост потребностей обуславливает производство все новых и новых технических средств. Этот рост определен жизнью, но он обусловлен и потребностью в творчестве, присущей человеку как разумному существу.

При создании техносферы установление потребностей выступает как концептуальная задача. Установление потребностей ведет к формированию технической задачи.

Дальше необходимо уяснить задачу (проблему). Уяснить в чем заключается задача,- значит существенно продвинуться в исследованиях. И наоборот – неправильно понять задачу – значит, направить исследование по ложному пути.

Этот этап творчества непосредственно связан с фундаментальным философским понятием цели, т.е. мысленным предвосхищением результата.

Сформулировать цель значительно труднее, чем следовать принятой цели.

 

Мнения философов.

 

Приведем мнение Белозерцева В.И. [15].

Действующие в окружающем нас объективном мире законы и закономерности природы подразделяются на два вида:

1. В нетронутой человеком природе естественные первичные законы и закономерности природы, сущности, свойства, силы, процессы;

2. В «искусственно » преобразованной человеком природной среде, в технических устройствах, технологических процессах действуют законы и закономерности – технические, которые по своей сущности являются комбинационными, а по своему происхождению – вторичными законами и закономерностями. Необычные для природы различные сочетания и комбинации первичных законов, процессов и сил порождают новые, неизвестные ей комбинационные по характеру технические законы и закономерности. Именно по этому технических законов и закономерностей, в принципе не может быть в нетронутой человеческой природе.

Таким образом, комбинационные связи в технических объектах имеют все признаки закономерности: объективность, сущность, повторяемость, устойчивость и внутреннюю необходимость.

По мнению Белозерцева в настоящее время нельзя сказать, что уже раскрыта система, вся совокупность философских проблем технических наук. Эта область по существу переживает период становления.

Белозерцев выделяет следующие аспекты философских проблем технических наук. Это социальные, онтологические, гносеологические и методологические аспекты. Социальные аспекты должны рассмат­ривать научно-техническое творчество в условиях определенной экономической формации. Онтологические (сущие практические) аспекты должны, прежде всего, определить место технических наук в системе научного знания. Должно быть продолжено философское осмысление таких объективных категорий, как труд, закономер­ности антропогенного мира, учет экологических ограничений. Гносеологические (познавательные) и методологические аспекты включают вопросы-решения технической задачи: движение мысли от абстрактного к конкретному, роль практики, формы сочетания научной и инженерной деятельности, роль интуиции и воображения в техническом творчестве, техническую идею как особый вид творчества, проблему лидера и др.

Говоря об ограничениях, требованиях и области действия технических законов можно сказать, что законы развития технических систем действуют взаимосвязано между собой и с законами природы.

 

Мнение Самарина В.В. [4].

По вопросу существования объективных технических закономерностей среди философов имеются различные точки зрения: от фактического отождествления их с законами природы, действующими в технике, отвергая не только собственные техничес­кие закономерности, но и социальные закономерности технического прогресса, до полного признания их.

Мое мнение основывается на понимании своеобразия техничес­ких закономерностей. Человек в технике, преследуя свои цели, с одной стороны, подчинен природе, а с другой - создает нечто отличное от природы.

Закономерности строения (или структура) техники действитель­но существуют, и, на мой взгляд, состоят в необходимости, существенности, всеобщности, повторяемости состояния определен­ных элементов или процессов техники данного вида.

В свое время К. Маркс установил всеобщую, структурную собственно техническую закономерность развития совокупности машин.

"Всякое развитое машинное устройство состоит из трех существенно различных частей: машины-двигателя, передаточного механизма, наконец машины-орудия или рабочей машины" (Маркс К,, Энгельс Ф. Соч., т. 23,. с. 325).

Среди собственно технических законов существования и движе­ния имеющейся техники есть законы, отличные от природных, и есть законы, представляющие измененные законы природы.

В заключение отметим то общее, что имеется в живой природе и в технике. И у живых организмов, и в технике развитие средств воздействия на природу происходит соответственно изменению их функций. Кибернетика установила общие для техники и для живых организмов законы управления. Это «нечто общее» с большим успехом используется в таком новом направлении, как бионика.

Техника и природа в определенной мере связаны причинно-следственной взаимосвязью. Развитие техники ведет к изменению в природе, а эти изменения, в свою очередь, побуждают общество к осуществлению соответствующих изменений в технике.

Мнение Мелещенко Ю.С.

Мелещенко Ю.С. рассказывая о закономерностях движения исследовательской мысли в области технических наук, назвал всего одиннадцать положений [6]:

1. Постоянное расширение ассортимента природных и искусст­венных материалов.

2. Последовательное овладение все более сложными формами движения материи.

3. Использование все более глубинных и мощных источников энергии.

4. Растущая интенсивность процессов: давления, температуры, скорости и др.

5. Возрастание степени целенаправленности технических реше­ний.

6. Возрастание степени специализации и дифференциации.

7. Последовательное усложнение и интеграция, принципы взаи­мозаменяемости и модульности.

8. Сокращение временного интервала между датами открытия и практического использования.

9. Общее движение по пути автоматизации и роботизации.

10. Преодоление технического консерватизма.

11. Непрерывная концентрация материальных и технических средств.

 

Комментарий.

 Если проанализировать высказан­ные Мелещенко Ю.С закономерности, безусловно, верные характеристики (современные черты, особенности), но не закономерности развития техники. Они имеют скорее описательный, чем глубинный, причин­ный характер. Их нельзя отвергнуть, но трудно использовать для практической научной, инженерной и учебной деятельности. Неясно, как на основе этих положений пытаться раскрывать и преодолевать противоречия процесса развития техники, т. е. они не носят столь действенного характера, как например, у Альтшуллера и Балашова (см. ниже).

Безусловно существует методологическое единство естественных и технических наук. Оно опирается прежде всего на то, что в природе и в технике люди имеют дело с единой материей, существующей и развивающей­ся по единым законам. Отсюда следует, что универсальные диалектико-материалистические принципы познания не могут не быть общими.

В последние годы мы обратили свое внимание на те исследования, которые направлены на выявление специфических законов строения и развития технических систем. Говоря кратко, тезисно, отметим следующее.

1. Некоторые философы нам говорят: существуют только законы естественных наук. Остальное - несущественно, вторично, приложение к первому. И этим уже нанесен существенный ущерб не только техническому прогрессу, но и самой философии.

2. НТР развивается, а между самими философами до сего времени идет спор - существуют ли специфические технические законы.

3. НТР продолжается, однако мы не имеем фундаментальных работ по закономерностям развития технических систем. Есть отдельные «проблемы», но и они не делают погоды.

4. Технознание не стало массовым, государственной политикой, т.к. нет общего фронта действий; дело не доводится до конца, до конкретного использования в конкретных специальностях и науках; нужны активные действия, как в технике, так и отражение этих процессов в философии.

 

 

Выводы

Среди проблем, обсуждавшихся на многолетнем общегородском московском семинаре но философско-методологическим проблемам технических наук [30], выделили некоторые вопросы, тезисы. положения:

1. Соотношение и взаимосвязь общенаучных методов познания (законов развития науки) и общего специфического метода технических наук (законов развития техники).

2. Есть ли и какова связь между законами развития науки и законами развития техники?

3. НТР характеризуется интеграцией фундаментальных и прикладных исследований. Отсюда необходимость разработки концептуального аппарата взаимодействия технических наук в общей системе «наука».

4. Технические науки выделились в самостоятельную область знания. Отсюда необходимость изучения мировоззренческих, соци­альных, философско-методологических проблем.

5. Характер (суть) техники определяется законами развития природы, но техника приводит к существенным изменениям многих свойств природных объектов. Возникают естественно-технические законы, конкретизирующие и дополняющие естественно-научные понятия, законы применительно к техносфере.

Приведем любопытный штрих, иллюстрирующий принципиаль­ные отличительные черты и возможности законов развития техники в сравнении с естественными законами (законами природы). В природе, как правило, происходит процесс не накопления, а рассеивания энергии (диссипация), выравнивания потенциалов. В тех более редких случаях, когда энергия накапливается, происходит внезапная (взрывная) разрядка (бури. молнии, землетрясения и т. д.). Но те и другие процессы неуправляемые (человечество пока не научилось это делать).

Во многих же технических проблемах (технологиях, конструкци­ях, передвижениях и т. д.) человек управляет процессом. И знание законов развития техники играет здесь важнейшую роль (конечно в сочетании с естественными законами).

В предисловии к сборнику [30] обобщающему пятилетнюю работу московского семинара, отмечается «слабая разработка философско-методологических проблем технических наук», что эти проблемы «требуют дальнейшего изучения и пропаганды, практи­ческой оценки и развития на занятиях методологических семинаров, научно-практических конференциях и симпозиумах».

Московские товарищи [30] пришли независимо к одному и тому же выводу: «Творческое содружество представителей технических наук и философии будет способст­вовать более полному и глубокому решению этих проблем». Аналогичное мнение у Е-П. Балашова [2]. Он отмечает, что процесс сближения общественных и технических наук, к сожалению, идет медленнее, чем этого требует современное общество. Представители общественных наук в своей деятельности часто ограничиваются набором иллюстраций из области прикладных наук. Практически отсутствуют конструктивные философские исследования по законо­мерностям развития систем различного функционального назначе­ния, по методологии научного и технического творчества.

Позиция Альтшуллера Г.С.

 

Альтшуллер Г.С. сформулировал три условия принципиальной жизнеспособности технических систем:

1. Закон полноты частей системы. Необходимым условием принципиальной жизнеспособности технических систем является наличие и минимальная работоспособность основных частей системы. Полной техническая система является в том случае, ели она имеет все необходимое для выполнения своих функций без участия человека.

2. Закон «энергетической проводимости системы». Необходимым условием принципиальной жизнеспособности технических систем является проход энергии по всем ее частям.

3. Закон согласования ритмики системы. Необходимым условием принципиальной жизнеспособности технических систем является согласования ритмики (частоты, колебаний периодичности) всех частей системы.

Развитие технических систем идет в направлении увеличении степени идеальности систем.

Техническую систему можно считать идеальной, если она не имеет веса и размеров, не затрачивает энергии, работает без потерь времени и полностью выполняет свои функции.

Существование технической системы не самоцель. Система нужна только для выполнения какой-то функции (или нескольких функций). Система идеальна, если ее нет, а функция осуществляется.

Развитие частей технической системы идет неравномерно. Чем сложнее система, тем неравномернее идет развитие ее частей. Это свойство называется законом неравномерности развития частей системы.

Исчерпав возможности своего развития, система включается в надсистему (закон перехода в надсистему) в качестве одной из ее частей: при этом дальнейшее ее развитие идет на уровне надсистемы.

Переход в надсистему моджет осуществляться по трем основным путям:

1) создание надсистем из однородных (одинаковых) элементов (например, объединение электростанций в единое энергетическое кольцо др.).

2) создание надсистем из конкурирующих (альтернативных) систем (например, парусно-паровые корабли и др.).

3) создание надсистем из антагонистических систем (например, кондиционер, как объединения холодильника с нагревателем и т.д.).

Антагонистические системы воспроизводят в своей структуре предысторию своего развития.

Ф. Энгельс в «Диалектике природы» отмечал, что «история развития человеческого зародыша в чреве матери представляет собой лишь сокращенное повторение развивающейся на протяже­нии миллионов лет истории физического развития низших живот­ных предков, начиная с червя.

Развитие технических систем идет в направлении перехода от макроуровня (систем, состоящих из сложных подсистем, деталей сложной формы) к микроуровню (системам, использующим физические эффекты, связанным со строением материи).

Суть закона повышения динамичности и управляемости технических систем:

Развитие технических систем происходит примерно в следующем порядке:

а) от системы с постоянными параметрами к системам с параметрами, изменяющимися при изменении режимов работы системы, что обеспечивает оптимальность ее функционирования (самолет с изменяемой в зависимости от режима полета геометрией крыла и др.);

б) от узкофункциональных систем, предназначенных для выпол­нения конкретной цели, к широкофункциональным системам, позволяющим изменять функции перестройкой;

в) к системам с дифференцированными внутренними условиями (например - требуемые технологией производства температура, давление, газовый состав и др.) в то время, как условия на «входе» и «выходе» системы определяются внешней средой и человеком (цехи с инертной атмосферой для обработки сильно окисляющихся материалов и др.);

г) к системам с увеличением числа степеней свободы, к системам гибким, эластичным (использование в судостроении эластичных покрытий типа «Ламинфло», позволяющих значительно увеличи­вать скорость корабля и др.);

д) к системам с изменяющимися связями между элементами, в том числе:

- с заменой вещественных связей полевыми (дистанционное радиоуправление);

- с использованием вещественных связей, изменяющихся под воздействием поля (электромагнитное перемешивание при непре­рывной разливке стали и др.);

е) от систем со статической устойчивостью к устойчивым динамическим, т.е. только за счет управления (от 3-колесного велосипеда к 2-колесному и т. п.);

ж) к использованию самопрограммирующихся, самообучающих­ся, самовосстанавливающихся систем.

Обобщая сказанное, следует указать, что динамичность и управляемость технических систем происходит объективно и вверх: от меньшего к большему, В этом весь смысл.

Мною сформулирован закон об увеличении степени вепольности системы. Если под вепольностью понимать взаимо­действие вещества и поля (различных полей, например - гравита­ционных, магнитных, силовых и др.), то закономерность здесь проявляется в том, что развитие системы идет в направлении увеличения степени вепольности.

 

Позиция Балашова Е.П.

В монографии [2] сформу­лированы закономерности совершенствования функционально-структурной организации технических систем.

В каком направлении развиваются системы? В зависимости от сохранения (вложения) отдельных функций развивающихся систем. Это значит, что каждое новое поколение системы данного класса воспроизводит совокупность основных функций предшествующих систем. Поэтому важно изучение прототипов.

Основным источником развития антропогенных систем является борьба диалектических противоположностей - «многофункцио­нальность» и «специализация».

Закон относительного и временного разрешения противоречий в антропогенных системах.

Противоречия, возникающие в антропогенных системах в процессе развития, разрешаются временно на определенных этапах развития систем конкретного класса и проявляются в дальнейшем в трансформированном виде на новом качественном уровне.

Конструктор при создании конкретного образца системы приходит к определенному компромиссу в выборе количественных значений показателей качества отдельных подсистем, пытаясь уравновесить противоречивые стороны.

Сформулирована закономерность повышения функциональной и структурной вещественно-энергетической информационной целостности систем.

Целостность систем обусловлена возможнос­тью вещественных, энергетических и информационных процессов преобразования, хранения и управления.

В реальных системах процессы преобразования, хранения и обмена веществом, энергией и информацией взаимосвязаны.

Следует отметить, что в правильно спроектированных системах все процессы идут в едином ритме. Условие ритмики должно соблюдаться не только внутри системы, но и при ее взаимодействии со средой.

Баланс и гармония во всем - характерные черты совершенства функционально-структурной организации систем.

Принцип многофункциональности систем устанавливает взаимосвязь изменения функции и структуры многоуровневых систем в процессе их развития, а также определяет основные тенденции и этапы развития антропогенных систем.

Анализ эволюции антропогенных систем показывает, что по мере развития систем, усложнения и расширения реализуемых ими функций, наиболее эффективными и жизнеспособными являются системы, в которых расширение функциональных возможностей элементов находится на различных уровнях иерархии системы, опе­режает рост их сложности.

Закономерность адекватности структурной организации назначению системы я представляю себе таким образом, что максимальное соответствие структуры реализуемым функциям обеспечивает максимальную эффективность системы.

Сущность закономерности, которую я назвал взаимосвязью и взаимосвязанностью качественных показателей системы заключается в том, что если под качеством системы понимаются такие ее параметры, как энергоемкость, эффективность, то оказывается, что за повышение одного из показателей часто приходится «расплачиваться» (ухудшать) другими.

Балашов приводит закон диалектического уравновешивания, сформулированный А.А. Денисовым и Д.Н. Колосниковым [63]. Суть его в том, что развитие системы идет в направлении уменьшения количественных характеристик их противоречия. Возникновение новой антропогенной системы подчиняется в каждый момент времени принципу наименьшего действия. Движение к равновесию происходит по пути наименьшего сопротивления, более «выгодного», с минимальными отклонениями от оптимального пути.

 

Позиция Половинкина А.И.

Принцип избыточности технических решений. Принцип заключается в том, что в любой момент времени для реализации любой функции число созданных технических решений на уровне предложений, патентов, чертежей, моделей и опытных образцов всегда больше серийно реализован­ных.

Принципа соответствия между функциями и техническими решениями. Каждая функция на множестве имеющихся и возможных технических решений выделяет определенное подмножество технических реше­ний, реализующих эти функции.

Принцип относительного существования функции и технических решений заключается в том, что функции имеют намного большую долговечность по сравнению с техническим решением, выполняю­щим эту функцию.

Принципа конструктивной эволюции. Любой технический объект при ретроспективном рассмотрении его развития является звеном цепи конструктивных изменений, в котором изобретателю первого (начального) технического решения обязательно предшествовало появление (изобретение) новой функции.

Принцип проявляется в пропорциональности между важностью функций и затратами. Чем важнее функция для общества (государства), тем больше средств расходуется на совершенст­вование технических объектов для выполнения этой функции и тем выше темпы конструктивной эволюции.

Принцип инерции в сфере производства. Этот принцип проявляется в следующем. Производство серийно выпускаемых технических средств увеличивается от нуля по восходящей кривой сначала с отставанием от спроса, затем достигает максимума (перепроизводства), после чего происходит снижение производства до стабилизированного уровня или же до нуля в случае появления лучшего технического решения для выполнения этой же функции.

Наблюдается постоянное повышение степени механизации и автоматизации технических средств. Да, такая закономерность существует. В любом дереве конструктивной эволюции, начинающемся от конкретной функции, имеет место последовательное появление технических объектов понижающих долю (степень) участия человека в выполнении функций.

Всеобщее соответствие между функцией и структурой технических объектов. Каждый элемент технического объекта или его конструктивный принцип имеют хотя бы одну функцию, обеспечивающую реализацию функций технического объекта, т.е. исключение элемента или признака приводит к ухудшению какого-либо показателя технического объекта или к прекращению им своей функции.

Прогрессивность конст­руктивной эволюции технических объектов проявляется в законе (гипотезе) о прогрессивной конструктивной эволюции технических объектов. В технических объектах с одинаковой функцией переход от поколения к поколению вызван устранением выявленного на данный момент главного дефекта, связанного, как правило, с улучшением одного или нескольких критериев прогрессивного развития и происходит при наличии необходимого научно-технического потенциала и социально-экономической целесообразности.

 

Комментарии.

1. В приводимых выше закономерностях есть много общего, но много и различий, т. е. они не адекватны. Следовательно, развитие (формирование) этих законов еще далеко от какого-то завершения. Не прослеживается использование системного подхода в раскрытии данных законов в общей системе техники и в частных (спе­циализированных) ее проявлениях.

2. В них не выделена полностью или весьма слабо отражена роль социальных факторов. Это большое упущение. На связь социального с техническим, взаимосвязь человеческого фактора с техническим прогрессом указывают многие философы, отражая потребности общества.

 

Выводы.

 

Законы и закономерности, сформулированные Е.П. Балашовым, согласуются с разработанным им функционально-структурным подходом (функциональность, соответствующие ей структуры применительно к системам). По своей сути они близки к тем, которые даны Г.С. Альтшуллером. Но адекватность и соот­ветствие между ними иногда трудно устанавливаются. Например, закон увеличения степени вепольности у Г.С. Альтшуллера и повышения функциональной и структурной вещественно-энергетической и информационной целостности системы у Е.П.Балашова, видимо, все же имеют соответствие.

Закон динамического уравновешивания, взятый Е.П. Балашовым у А.А. Денисова и Н.Н. Колесникова, носит характер механического закона, как в классической механике. Возникают сомнения в возможности его обобщения и распространения на другие немеханические системы в указанном виде.

У А.И. Половинкина и Е.П. Балашова сформулирован ряд законов и закономерностей, определяющих первообразность функций по отношению к многообразию структур, их реализующих. Ряд положений нуждается в доказательствах и конкретизации.

Следует отметить, что формулировки Г.С. Альтшуллера, данные им до Н.П. Балашова и А.И. Половинкина, носят более конкрет­ный, практический характер, близки к проводимой им изобрета­тельской деятельности. У других авторов они имеют еще более общий вид и применены «вообще» к техническим системам. Какой-либо законченности и полноты нет ни у кого из них.

В ряде законов используются термины «гармоническое соотношение», «минимальная работо­способность» и т.д., которые не связаны с какими-либо количественными показателями и указывают лишь на общие тенденции в процессах и соотношениях.

Все законы развития техники действуют не обособленно, а, по-видимому, взаимосвязанно. Связи между ними не оговорены. Можно полагать, что в ряде случаев пренебрежение взаимосвязан­ностью законов неправомерно и недопустимо.

 

Вам нужно принять решение

Вся творческая и практическая деятельность человека, а проще - вся его жизнь, постоянно находится в движении между желаемым и действительным.

«Технология» человеческого познания действительности вырабо­тала и отработала до механизма цепочку: задача (цель) - поиск (процесс) - решение, которую мы постоянно, часто неосознанно, проходим на каждом шагу.

Системная методология также неосознанно и незримо присутст­вует в каждом нашем действии. При этом цель вытекает из потребности, а решение - порождает новую потребность. Пренеб­режение целостностью, единством системы, неучет тех или иных факторов, ограничений, связей, диалектики развития, человеческого фактора, экологических последствий и др. - приводит к ошибочным решениям. Здесь движение от желаемого к действительному, в силу сложности и множественности факторов и процессов, не должно решаться на интуитивном уровне методом «проб и ошибок».

Д.И. Менделеев, обучая своих учеников, говорил: «Один идет по темному лабиринту ощупью, может быть, на что-нибудь полезное наткнется, а может быть, лоб разобьет. Другой возьмет хоть маленький фонарик и светит себе в темноте. И, по мере того, как он идет, его фонарь, разгораясь все ярче и ярче, наконец превращается в электрическое солнце, которое ему все освещает, все разъясняет.»

Особый класс задач, который приходится решать сообществу людей, представляют технические, инженерные задачи. Мы живем в мире в значительной мере переделанном против того, что создала природа эволюционным путем за миллиарды лет. Для решения таких задач разработан целый ряд приемов и подходов, от эвристических до детально кон­кретных, облекаемых в форму алгоритмов, от афористических, облекаемых в форму анекдотов и побасенок («Семь раз отмерь - один раз отрежь»), до строгих математических теорий.

Рассмотрим основные современные приемы и методы принятия решений, начиная с принципов материалистической диалектики до конкретных приемов решения конкретных инженерных задач и изобретательской деятельности.

 

Как думать и над чем думать

Для принятия решения надо лучше думать – такую рекомендацию нередко можно услышать в повседневной жизни. Бесспорно, надо учиться мыслить, овладевать приемами активизации мыслительного процесса. Но одно это редко приведет к результатам, если не пользоваться системным подходом. Действительно, прежде чем решить, как думать, надо определить над чем думать, т.е. правильно выделить проблемную ситуацию и поставить для нее задачу, определить основное противоречие системы и искать средство его преодоления, не забывая о связях системы, учете ограничений. Чтобы выявить проблемную ситуацию, целесообразно провести анализ (поиск) надсистемы, в которую входит данная система. Нужен системный мыслительный процесс, системный подход к принятию решений. Только тогда на каждом этапе этого алгоритма активизация мышления принесет наибольшую пользу.

Рассматривая методы принятия решений условно разделим их на две группы: общие, охватывающие неограниченно широкий круг проблем, и более частные, относящиеся к синтезу новых технических объектов, т.е. непосредственно к инженерной деятельности.

 

Логика.

 

В основе формально-логических методов принятия решений лежит использование логических законов выводного значения, полученного логически из предшествующих знаний без непосредст­венного отношения к опыту. Основателем логики считается Аристо­тель.

Одно из основных требований логики - обязательность последовательного непротиворечивого, обоснованного мышления. Нельзя считать истинными знания, содержащие логические проти­воречия. Логика помогает интенсифицировать любую умственную деятельность.

Логика - это плавный непрерывный процесс без скачков и разрывов. А как же с помощью логики объяснить диалектический скачок - переход количества в качество?

По-видимому, истина лежит где то посередине между привлекатель­ными идеями нешаблонного мышления и жесткими правилами логики.

 

Что может ЭВМ.

 

Формализованную часть алгоритма принятия решения (т.е. целенаправленный перебор вариантов) ЭВМ, как чудесный помощник человека, может выполнять наилучшим образом: многократно расширенная область и количество перебираемых вариантов, быстродействие ЭВМ позволяют выбрать лучшие из них.

Но ведь основная часть алгоритма системного подхода к принятию решения остается неформализованной, выполняется чело­веком до применения ЭВМ и строго ограничивает роль ЭВМ постановкой задачи, моделью, целью, критерием и т.д. Только при таком сознательном понимании роли ЭВМ человек может ее эффективно использовать.

 

Нейросетевые технологии.

 

Наш мир все активнее наполняется развивающимися интеллектуальными системами, нейрокомпьютерами, нейроподобными системами. Успешно развивается нейроинформатика и ее различные приложения от неироинформатики до различных применений неиросетей в технике и технологиях, в финансовых и медицинских проблемах, в распознавании образов, диагностике, прогнозиро­вании и многих других их задачах.

Привлекают новые большие возможности распараллеливания процессов, увеличения быстродействия, прямой связи между входными и выходными параметрами, умение нейросетей обучаться и доучиваться в процессе функционирования, реально отражать меняющиеся свойства обслуживаемого нейросетью объекта в течение его эксплуатации и др.

 

Мозговой штурм

 

Этот наиболее известный и широко применяемый метод генерирования новых идей появился в США в 1957 г. Идея его состоит в творческом сотрудничестве группы специалистов которые, являясь как бы единым мозгом, пытаются штурмом овладеть проблемой. В процессе такого штурма участники выдвигают и развивают собственные идеи, идеи своих коллег, используя одни идеи для развития других, комбинируя их.

       Существует несколько модификаций мозгового штурма индиви­дуальный, массовый, письменный, двойной и обратный.

 

Конференция идей

 

Конференция идей - одна из разновидностей коллективного творчества. От мозгового штурма она отличается прежде всего темпом проведения и проводится в виде совещания по выдвижению идей с допущением доброжелательной критики в форме реплик, комментариев и т.п. Считается, что критика может даже повысить ценность выдвинутых идей. Все выдвинутые идеи фиксируются в протоколе без указания авторов. Здесь заключается тот существенный смысл, что результаты конференции идей являются как бы коллективным трудом.

 

Деловые игры

 

Деловые игры представляют собой метод имитации принятия управленческих и других решении в различных ситуациях (производственных и непроизводственных) путем игры по заданным правилам группы людей или человека с ЭВМ. Проигрывается множество ситуаций как бы произвольных. В действительности же в силу специфически дискуссионных приемов, плодотворность кото­рых отмечали еще древние («истина рождается в споре») возникает ряд альтернативных решении.

 

Методы экспертных оценок

 

Сущность этих методов состоит в использовании опыта работы эрудиции и интуиции высококвалифицированных специалистов способных находить решения в условиях трудно формализуемых ситуаций и недостаточной информации. Методы экспертных оценок позволяют квалифицировать (количественно выразить) качественные характеристики изучаемого объекта. При этом реализуются возможности системного подхода, поскольку интегрально использу­ется информация, которой владеет группа экспертов.

 

Синектика

 

В основу синектики (синектика – греч. совмещение разнородных элементов) положен мозговой штурм, отличающийся от обычного тем, что здесь используются постоянные группы, составленные из специалистов разных профессий. Рекомендуется, чтобы члены синектической группы (кроме руководителя) перед началом работы не знали сути рассматриваемой проблемы, что по­зволяет им абстрагироваться от привычного стереотипа мышления, успешнее преодолевать психологическую инерцию мышления. Ибо, как считают авторы метода, умственная деятельность человека более продуктивна в новой, незнакомой ему обстановке.

 

Метод контрольных вопросов

Метод контрольных вопросов [20, 31] позволяет с помощью наводящих вопросов подвести к решению задачи. В практике изобретательства применяются специально разработанные вопрос­ники, например «Контрольные вопросы для рационализации узлов», «Контрольные вопросы для рационализации деталей» и др.

 

Метод контрольных вопросов

 

Каждый участник получает блокнот, в который в общих чертах ежедневно заносит возникающие в рассматриваемой проблеме идеи. Одновременно формулируются наиболее целесообразные нап­равления исследования на последующие этапы работы. Кроме того, в блокноте фиксируются идеи, хотя и находящиеся несколько в стороне от основной проблемы, но развитие которых может оказаться полезным для нахождения конечного решения.

Участники в конце работы сдают свои блокноты руководителю группы для систематизации материалов. Затем следует творческое обсуждение систематизированного материала всеми членами группы. Для выбора окончательного решения используется «мозговой штурм» или иной аналогичный метод.

 

Метод «матриц открытия»

 

Здесь, как и в морфологическом методе исследуются все мысли­мые варианты, вытекающие из закономерностей морфологии совершенствуемого объекта. Суть метода в построении таблицы, в которой пересекаются два ряда характеристик вертикальный и горизонтальный.

 

Другие методы

В обзорах современных методов принятия решении [31, 24, 18, 8] отмечается что в настоящее время имеется уже несколько сотен методов, что они ориентированы на различные классы задач, и их авторы не имеют общих позиции на природу инженерного творчества. Отсутствует установившаяся классификация этих методов. Например автор [31] выделяет четыре группы методов.

1 Методы случайного поиска (мозгового штурма, записной книжки Хефеле, фокальных объектов, гирлянд Крика, правила Тринга и Лейтуэйта, контрольные вопросы Осборна, рекомендации и вопросы Эйлоарта, советы и вопросы Пойа, постановка новых целей, синектика, интегральный метод «Метра»).

2 Методы функционально структурного исследования (морфологический ящик, матриц открытия, десятичные матрицы поиска, комбинаторики, ступенчатого подхода, функционального изобретательства, проектирования Фанге, конструирование по Байтцу, алгоритмический избирательный метод конструирования по каталогам, системное конструирование по Ханзену, методическое конструирование по Роденакеру, синтез изделии по Тьялве, конструирование по Келлеру, вепольныи анализ)

3 Методы логического поиска (метод Баргини, АРИЗ, обобщенный эвристический алгоритм, комплексный метод поиска).

4 Проблемно-ориентировочные методы (фундаментальный ме­тод проектирования Матчетта, индуцирование психоинтеллектуальной деятельности систематической эвристики).

 

 

Что общего между различным.

 

У многих зрелых инженеров ученых, педагогов на основе большого личного опыта вырабатывается «своя» система принятия решении. Существуют многие приемы активизации творческой деятельности, иногда коллективные в виде мозгового штурма и др. Есть ли что то общее между этими многообразными приемами? Нельзя ли выделить общие принципиальные положения среди этих вроде бы разных подходов?

Если бы удалось, то была бы выделена теоретическая основа для методов принятия решении.

Есть ли общее между алгоритмами изобретательской деятель­ности Альтшуллера и Балашова, принципами Ощепкова и методами Акоффа, логикой, инверсологиеи, синектикой, эвристическим поиском и многими другими формами творческого подхода и активизации мышления в проблеме принятия решения?

Ответ на эти сложные вопросы может содержаться в том, что общим здесь является диалектическая материалистическая позиция, системным подход как мировоззрение, как методология. Многообразие формы, структуры зависит от конкретизации условий, места и времени поставленных функции (целей), специа­лизации деятельности. Отсюда практический вывод: овладев систем­ным подходом к принятию решений, можно быстрее постигнуть и выбрать для своей деятельности наиболее приемлемые методы принятия решений.

Главное здесь учиться не только правилам и приемам мышления (что бесспорно важно), но и диалектике, т.е. умению в развитии (движении) находить и преодолевать противоречия на научно материалистической основе.

 

Системный подход к принятию решений состоит в следующем:

1. Принятие решения является не начальным, а завершающим этапом творческого цикла, который начинается с выделения системы, определяющей проблемную ситуацию, затем продолжается в выявлении тех закономерностей, по которым развивается и функционирует данная система, и только потом наступает этап выбора метода принятия решения.

2. Возможность выбора из многообразия методов принятия решений обеспечивается использованием функционально-структурного подхода.

 

О "человеческом факторе " в принятии решений

 

Процесс принятия решения даже в технических вопросах нельзя отделить от "человеческого фактора " - от психологических и социально-экономических факторов, от особенностей личности, в частности смелости и умения ввести (включить) в решение некоторую степень риска. Под риском понимается не поведение игрока, а умение качественно учесть интуитивно некоторые факторы.

По мнению профессора В. Абчукa, ученого в области исследования операций:

«Выработка верных решений - это не только наука. Наряду с исследованием операций для обоснованного выбора сегодня, как и в прошлом, большое значение имеют знание конкретного дела, а также интуиция, опыт, чутье все то, что называется словом “искусство”. Но ведь между наукой и искусством нет непроходимой пропасти. Наука, говорит, прежде всего мера. А искусство – чувство меры. В их единстве и рождается высшая мудрость.

Исследование операции - важнейший инструмент для выработки концентрированной мудрости - верных решений во всех областях целенаправленной деятельности человека могучее средство повышения эффективности и качества общественного производств.

Сегодня предмет исследование операции включен в программы ряда вузов. Дело явно идет к тому, чтобы завтра основами столь нужного знания овладели еще в школе».

Необходимо добавить, что сегодня еще многие и многие вопросы являются искусством. Всегда, как не велики будут успехи формализации принятия решении будет существовать область недоступная, где властвует человек.

Это не только область эмоции вкусов воспитания и становления личности. Наука принятия решений, ЭВМ и техника будут мощным инструментом в руках людей доставляя им варианты из области хороших решении. Ставить задачу и принимать окончательное решение будет человек.

 

ЗАКЛЮЧЕНИЕ

 

Представляя процесс инженерного творчества как связь трех неразрывных составляющих: системный подход – законы развития – принятие решений в соответствии с положениями материалистической диалектики и, рассмотрев каждую их составляющих, мы убедились в эффективности и необходимости их применения в инженерном творчестве.

В соответствии с этим раскроем смысл вкладываемый в концепцию современного взгляда на научную инженерную и учебную деятельности.

- Во-первых, мировоззренческая позиция, основанная на диалектическом материализме. И находит эта позиция свое отражение в системном (функционально структурном) подходе.

- Во-вторых, применяя системный подход к техническим системам, мы базируемся на законах и закономерностях их развития.

- В третьих результатом системного подхода к задачам развития техники является принятие решения, которое выражает процесс вскрытия и преодоления противоречий. Здесь весьма важно владеть разнообразными методами активизации творческого мышления и использовать накопленные в различных отраслях техники опыт, банки данных.

Таким образом, ученый, инженер, педагог на основе системного подхода опираясь на законы развития техники может принимать эффективные решения в своей научной инженерной и учебной деятельности.

Что же необходимо делать?

Сейчас необходимо осознать, что действующая испокон веков система образования носит не творческий, а информационный характер. Да, так было всегда, но так не может оставаться дальше.

Принимающему решение не легко расстаться с возвышающей мыслью о себе, о том, что только его «гении», а не сознательная системная творческая деятельность в союзе с наукой, опираясь на законы природы и законы развития техники, ведет дело кратчай­шим путем к успеху.

Нужно перешагнуть высокий барьер предубежденности, чтобы практически осознать, что диалектический материализм это не то, что находится за дверьми кафедры философии, а мировоззрение, которое определяет деятельность человека в технике и в обществе.

В последнее время начались успешные исследования в области философского осмысления технических наук инженерной деятельности и проектирования. Время меняет подход к изучению философских и социальных проблем научно технического прогресса.

Нам с вами нужны конкретные знания о системности мира, о человеке, о законах развития техники и методах принятия решении. Необходимо овладеть методологией научно технического творчества, осмыслить с этих позиции «свою» научную, инженерную, учебную деятельность. Актуальной задачей нашего времени является дальнейшее развитие и конкретизация в различных областях изложенной выше современной концепции.

Для этого необходима активная творческая работа (содружество) философов и представителей конкретных специальностей (инжене­ров, ученых, педагогов) Таким путем мы будем успешно содействовать научно-техническому прогрессу, эффективному развитию нашего общества.



Литература

 

1. Уемов А. И. Системный подход и общая теория систем М.: Мысль 1982 246с.

2. Балашов Е. П. Эволюционный синтез систем М.: Радио и связь. 1985 328с

3. Кузьмин П. К. Принципы системности в теории и методологии К. Маркса. М. Политиздат, 1986. 399с.

4. Самарин В. В. Техника и общество. Социально философские проблемы развития техники. М.: Мысль 1988. 143с.

5. Саймон Герберт. Наука об искусственном. М. Мир 1972 216с.

 

6. Мелещенко Ю. С. Техника и закономерности ее развития. // Вопросы философии. 1985. №8 С 16-24

7. Половинкин А. И. Законы строения и развития техники. Волгоград Волгоградский политехн. ин-т 1985. 202с

8. Половинкин А. И. Основы инженерного творчества. М.: Машиностроение. 1990. 322с

9. Злотин Б. Л. Зусман А. И. Законы развития и прогнозирования технических систем. Методические рекомендации. Кишинев. Картя Молдовеняске. 1993. 114с

10. Половинкин А И. Методы инженерного творчества. Учебное пособие. Волгоград: Волгоградский политехн. ин-т, 1984. 364с.

11. Альтшуллер Г. С. Злотин Б. Л. Филатов В .И. Профессия — поиск нового. Кишиней. Картя Молдовеняске. 1985. 242с.

12. Альтшуллер Г.С. Алгоритм изобретательства, 2-е изд. М.: Московский рабочий. 1973,164с.

13. Альтшуллер Г.С. Творчество как точная наука. М.: Сов радио, 1979, 216с.

14. Альтшулдер Г.С. Найти идею. Введение в теорию решения изобретательских задач. Новосибирск: Наука. 1985. 196с

15. Белозерцев В.И. Диалектика развития техники. М.: Знание. 1974. 142с.

16. Акофф Р. Искусство решения проблем. Пер. с анг. М.: Мир. 1982. 214с.

17. Эдвард де Боно. Рождение новой идеи. М.: Прогресс. 1976. 250с.

18. Джонс Дж К Методы проектирования Пер с анг 2-е изд М Мир 1991. 326с

19. Эсаулов А.Ф. Активизация учебно-познавательной деятельности студентов. Научно-методическое пособие. М.: Высшая школа. 1982. 223с.

20. Справочник по функционально стоимостному анализу (ФСА) .М.: Финансы и статистика. 1992. 431с.

21. Автоматизация поискового конструирования. Под. Ред. А. И. Половинкина. М.: Радио и связь. 1981. 312с.

22. Диксон Дж. Проектирование систем. Изобретательство ана­лиз принятие решении. М.: Наука. 1969. 150с.

23. Советский энциклопедический словарь 4-е изд. М.: Сов/ Энциклопедия. 1989.

24. Чус А. В. Демченко В.Н. Основы технического творчества (учебное пособие). Киев: Вища школа. 1983. 184с.

25. Абовский Н. П. Воловик А.Я. Современный взгляд на науч­ную инженерную и учебную деятельность. Красноярск. 1991. 68с.

26. Абовский Н. П. Воловик А.Я. Системный подход в научно техническом творчестве. Красноярск. Отдел.: Стройиздат. 1992.

27. Диалектика и системный анализ. М.: Наука. 1986. 336с.

28. Гвишиане Д. М. Диалектико-материалистическое основание системных исследований. [27] С 5—27.

29. Материалистическая диалектика как общая теория развития. М.: Наука. 1987. 559с.

30. Сборник «Философско-методологические проблемы техничес­ких наук». / Сост. и автор предисловия М. М. Гусев. М.: Московский рабочий, 1986. 264 с.

31. Кудрявцев А.В. Обзор методов создания новых технических решений (конспект лекций) М.: ВНИИГТИ, 1988. 52с.

32. Ларичев О. И. Системный анализ и принятие решений. [27] С 219-237.

33. Белозеров В. И. Диалектический материализм и технознание. Воронеж: Изд-во Воронежского ун-та, 1980.

25. Абовский Н. П. Творчество. Системный подход. Законы развития. Принятие решений. 1998.

 

Содержание.

Содержание........................................................................................................................................ 1

1. ВВЕДЕНИЕ................................................................................................................................... 2

2. ТРИ СОСТАВНЫЕ ЧАСТИ ПРАКТИЧЕСКОЙ ДИАЛЕКТИКИ ТВОРЧЕСТВА............... 3

2.1 СУЩНОСТЬ СИСТЕМНОГО ПОДХОДА........................................................................... 4

Что есть система.......................................................................................................................... 4

Зачем нужен системный подход............................................................................................... 7

Функционально-структурный подход..................................................................................... 8

Философская сущность системного подхода........................................................................ 10

2.2 ЗАКОНЫ И ЗАКОНОМЕРНОСТИ РАЗВИТИЯ ТЕХНИКИ.......................................... 11

Фундаментальные основы инженерного искусства............................................................. 11

Существуют ли объективные законы развития техники?................................................... 12

Законы и закономерности развития антропогенных систем............................................... 17

2.3 ПРИНЯТИЕ РЕШЕНИЙ НА ОСНОВЕ СИСТЕМНОГО ПОДХОДА........................... 23

Вам нужно принять решение.................................................................................................. 23

Принятие решений. Что это такое.......................................................................................... 24

Обучают ли методам принятия решений............................................................................... 27

Как думать и над чем думать................................................................................................... 27

Общие системообразующие методы, используемые в процессе принятия решений....... 27

Методы направленного поиска решения инженерных задач.............................................. 31

Что общего между различным................................................................................................. 33

О "человеческом факторе " в принятии решений................................................................. 34

3. ЗАКЛЮЧЕНИЕ........................................................................................................................... 35

Литература....................................................................................................................................... 36



ВВЕДЕНИЕ

 

Человечество переступило порог третьего тысячелетия. Наше общество связывает свои надежды с ожидаемыми переменами. В этих условиях недопустимо оставаться на позициях формализма и догматизма, которые в инженерной, особенно научной и учебной деятельности, нивелируют способности и оставляют в тени творческую индивидуальность личности.

В качестве проверочного теста (обоснования) выделим три вопроса.

Вопрос 1. Мы все слышали о системном подходе и системотехнике. Что вы знаете о их сущности и возможностях?

Вопрос 2. Окружающий мир условно можно разделить на два: естественный, где господствуют законы природы и искусственный - антропогенный мир созданный человеком, частью которого является мир техники. Законы естественного мира глубоко изучаются в курсах физики, биологии и др. Но знакомы ли Вы с законами и закономерностями развития антропогенного мира, как используете их в своей инженерной, учебной и исследовательской деятельности.

Вопрос 3. Какие методы принятия решений Вам известны? Обучали ли Вас методам принятия решений?

Мы считаем, что специалист, не имеющий основательной методологической подготовки, не может должным образом ориентироваться в непрерывно обновляющемся многообразии мира техники, даже в относительно узкой "своей" специальной области, не говоря уже о межотраслевых задачах. Для полной деятельности совершенно не достаточно иметь даже очень хорошую, но относительно узкую подготовку. Необходимо сформировать свою мировоззренческую позицию, связанную с научным и инженерным творчеством в Вашей области деятельности.

Существует много подходов к описанию процесса творчества. В одних описывается деятельность выдающихся ученых, педагогов, мыслителей, предпринимателей, артистов и других творческих личностей. Рассказывается творческая лаборатория деятельности, но нет выхода на обобщения, позволяющие говорить об общей методологии творчества. Проблемы творчества не связываются с системным подходом и законами развития систем.

В других подходах рассматриваются проблемы методологии творчества при изобретательстве и проектировании систем. Системный подход в них явно не используется, входит как-то интуитивно и подменяется другими понятиями.

В ряде работ по системному подходу не рассматриваются законы развития и функционирования систем.

Много работ посвящено методам принятия решений, но они не базируются на идеях системности и законах развития систем.

Есть рад работ, посвященных методам создания новых технических решений. Но предлагаемая в них методология не содержит взаимосвязи системного подхода, законов развития систем и методов принятия решений.

Ряд работ посвящен анализу творческой деятельности, психологии творчества, влиянию человеческого фактора на принятие решений, но без связи с системным подходом, и закономерностями развития систем.

Все это многообразие творческих подходов укладывается и обнимается предложенной концепцией творчества.

Основной задачей работы является представление творческого процесса как связь трех неразрывных составляющих: системный подход – законы развития – принятие решений в соответствии с положениями материалистической диалектики.

В рамках этой концепции:

1) Рассмотрим системный подход в его функционально-структурной концепции в связи с объективными законами и закономерностями антропогенного мира.

2) С позиции системного подхода рассмотрим общие философские положения теории принятия решений, а так же рассмотрим разнообразные методы решений этой важной проблемы различными авторами. 

Сегодня без ускорения научно-технического прогресса наше общество не решит своих экономических и социальных проблем. Особое внимание следует уделять анализу проблем на стыке разных наук - естественных, технических и общественных. Поэтому необходимо в общей взаимосвязи, на основе системного подхода овладение законами развития технических наук, эволюции антропогенного мира.

Необходимо привлечь внимание к формированию мировоззренческих позиций инженеров, научных работников и преподавателей. Каждому из нас необходимо овладеть искусством системного подхода, использовать объективные законы и закономерности развития техники и на их основе принимать практические решения.

 

ТРИ СОСТАВНЫЕ ЧАСТИ ПРАКТИЧЕСКОЙ ДИАЛЕКТИКИ ТВОРЧЕСТВА.

 

В соответствии с предложенной концепцией тремя составными частями практической диалектики творчества являются системный подход - законы развития техники - методы принятия решений.

 

Системный подход как методология изучения объекта состоит в том, что его недопустимо рассматривать без учета всей его полноты и сложности строения, целостности, взаимодействия и взаимообусловленности всех составляемых элементов между собой и со средой, из которой этот объект (система) выделен. В сложности строения рождается новое качество, которое отсутствовало у элементов, ее составляющих. Сущность системного подхода и проста, и сложна. И ультрасовременная и древняя, как мир, ибо уходит корнями к истокам человеческой цивилизации.

Законы развития техники должны быть основой и мощным ускорителем ее развития.

Техника - это одно из проявлений творческой человеческой деятельности, то, что называют иногда второй природой (антропогенным миром), полагая при этом первой природой естественный мир. Ни у кого нет желания пренебрегать объективными законами природы. А вот в антропогенном мире у людей, не ведающих о законах его развития, о характере их действия возникает соблазн «перескочить» через эти законы. В наших институтах пока, к сожалению, законы развития техники не изучаются.

Методы принятия решений необходимы для поиска решений все более усложняющихся технических задач. Овладеть разнообразным инструментарием мыслительного процесса для интенсификации творческой деятельности это настоятельная задача инженера ученого педагога. В целом речь идет о повышении общей культуры мышления, творчества в наши дни.

Деятельность инженера, ученого педагога (учителя) должна опираться на творчество особенно в наше время. Недостаточно узкой специальной подготовки для полноценной научной и инже­нерной деятельности. Непрерывно обновляющееся многообразие мира техники неразрывная связь не только с естественными, но и социальными проблемами с межотраслевыми задачами требуют от специалиста основательной методологической подготовки, укрепле­ния своих мировоззренческих позиции и совершенствования творческого арсенала.

Рассмотрим подробнее каждую из составляющих диалектики творчества.

СУЩНОСТЬ СИСТЕМНОГО ПОДХОДА

Первоочередными фундаментальными понятиями (терминами, определениями), через которые мы постараемся выразить суть системного подхода, являются «система», «функция системы», «структура системы», «внешняя среда», «связи», «ограничения», «критерии», «цель», «управление». В свою очередь каждое из этих понятий опирается на другие вспомогательные понятия.

Мы рассматриваем системный подход как определенную практическую методологию, с помощью которой инженер, ученый, педагог активно добивается желаемой цели в мире техники, науки, образования. В этой связи «сердцевину» системного подхода составляет функционально структурный подход.

 

Что есть система.

Система - это полный, целостный набор элементов, взаимосвязанных между собой так, чтобы могла реализоваться функция системы.

Отличительным (главным) свойством системы является то, что ни один из ее элементов не имеет присущих ей свойств, не может выполнять ту функцию, которую она осуществляет. Ведь в против­ном случае другие элементы не нужны! (Если и без них можно осуществить желаемую функцию).

В дальнейшем необходимо рассмотреть, очевидно, и связи системы с внешней средой (не в вакууме же она действует). Иначе без связи с внешней средой мы нарушим реальную картину целостного мира, исказим условия существования и функцио­нирования рассматриваемой системы (возможности существования). Часто это условие адаптации приспособление системы к внешней среде.

Система проявляется как целостный материальный объект, представляющий собой закономерно обусловленную совокупность функционально взаимодействующих элементов.

Основные свойства системы проявляются через целостность взаимодействие и взаимозависимость процессов преобразования вещества, энергии и информации, через ее функциональность структуру, связи, внешнюю среду и др.

 

Дата: 2019-05-28, просмотров: 262.