Функции, выполняемые диэлектриками в РЭА
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Диэлектрики имеют чрезвычайно большое значение для радиоэлектронной техники. Теоретические вопросы, связанные со строением диэлектриков с точки зрения зонной теории, были рассмотрены в пункте 1.1. В простейших случаях своего применения, диэлектрики используются в качестве электроизоляционных материалов. Назначение электрической изоляции сводится к тому, чтобы воспрепятствовать прохождению электрического тока по путям, нежелательным для работы данной электрической схемы. Однако, помимо пассивных, изолирующих функций, некоторые виды диэлектриков выполняют активные функции, порой более сложные, чем полупроводниковые материалы. Дадим некоторый (не полный) перечень функций, выполняемых диэлектриками в РЭА и элементов, в которых они используются.

Пассивные функции

1) Электроизоляция проводников тока;

2) Поляризационно – изорирующая межобкладочная среда конденсаторов;

3) Подзатворная изоляция полевых транзисторов;

4) связующая среда магнитодиэтектриков;

Активные функции

5) Вариконды, датчики температуры, нелинейные усилительные элементы (на основе сегнетоэлектриков);

6) Пьезоэлектрические генераторы, резонаторы, трансформаторы. Элементы акустоэлектроники (на основе пьезоэлектриков, акустооптических материалов);

7) Источники постоянного электрического поля (на основе электретов);

8) Электролюминофоры, фотолюминофоры, сцинтилляторы;

9) Модуляторы света;

10) Оптические запоминающие устройства;

11) Индикаторы (на основе жидких кристаллов);

12) Рабочие оптические лазерные среды.

 

Виды поляризаций

 

Свободные заряды – заряды способные двигаться под действием электрического поля на расстояния, намного превышающие межатомные.

 

Связанные заряды – заряды, смещающиеся под действием электрического поля на расстояние, соизмеримые, или меньшие, чем межатомные расстояния.

 

Поляризация – направленное перемещение в материале большого количества связанного заряда на ничтожно малые расстояния, соизмеримые, или меньшей, чем межатомные расстояния.

 

Физически процесс поляризации может протекать по-разному и сопровождаться различными явлениями, поэтому, с учётом физических тонкостей поляризацию разделяют на виды и классы (рисунок 2.1). Принципиальные отличия упругих и неупругих видов поляризации отображены в таблице 2.1. Спонтанная поляризация – относительно редкое и уникальное явление, свойственное некоторым кристаллическим диэлектрикам. В отличие от остальных видов поляризации, упругих и неупругих, спонтанная поляризация обладает свойством нелинейности.


                                          ПОЛЯРИЗАЦИИ

     
 

 


                  Упругие                                       Неупругие

             
     


                                          Релаксационные  Миграционные    Спонтанная

1. Электронно-                1. Ионно-              1. Межслоевая

упругая                            релаксациооная   2. Высоковольтная

2. Ионно-упругая            2. Дипольно-

релаксационная

3. Дипольно-                   3. Электронно-

упругая                            релаксационая

 

                                          Рисунок 2.1 – Виды поларизации

 

Таблица 2.1 – Особенности упругих и неупругих видов поляризации

Упругие виды Неупругие виды
1. Малое время установления t < ~ 10-12 c. 1. Относительно большое время установления t < ~ 10-7 c.
2. малые смещения связанных зарядов (в пределах упругих сил), на расстояния значительно меньшие межатомных. 2. Смещение связанных зарядов происходит на расстояния порядка межатомных (упругие силы преодолеваются).
3. отсутствие рассеяния энергии в виде тепла на радиочастотах. 3. имеют место потери энергии в виде тепла в процессе установления на радиочастотах.

 

Указанные в таблице отличия взаимно обусловлены. Если заряды связаны сильным внутренним полем, а внешнее электрическое поле и тепловые колебания не способны разорвать эти связи, то происходит небольшое смещение заряда в пределах действия упругих сил. Энергия внешнего источника поля, затраченная на смещение зарядов, практически полностью возвращается источнику после снятия поля, - в процессе обратного смещения во внешней цепи индуцируется ток, имеющий противоположное направление по отношению к току прямого смещения. Время установления упругих поляризаций мало, так как оно определяется динамическим смещением микрочастиц при воздействии на них поля.

Если заряды «привязаны» к своему месту относительно слабо и способны, преодолев упругие силы, сместиться на расстояние, равное одному или нескольким межатомным расстояниям, то с неизбежностью возникает их взаимодействие с окружающими частицами. Таким образом, в процессе неупругой поляризации часть энергии внешнего поля будет передана среде в виде тепловой энергии. Следует отметить, что причиной возникновения неупругих поляризаций является совместное действие внешнего электрического поля и теплового движения частиц среды. Одно внешнее поле не способно разорвать даже слабые связи, поэтому релаксационная поляризация должна быть термоактивирована. Вследствие этого, характерное время установления поляризации определяется не динамикой смещения частиц в поле, а характерным временем термоактивационного прыжка.

Название «релаксационные» большинство неупругих видов поляризации получило из-за того, что процесс их установления во времени t описывается релаксационными законами, содержащими затухающие экспоненты типа exp(-t / t). Параметр t, который называется временем релаксации, по сути определяет время установления данной поляризации. Любая релаксационная поляризация связана с перемещением связанного заряда на расстояния, соизмеримые или большие, чем межатомные расстояния.






Диэлектрические потери

 

Мощность, выделяющаяся в диэлектрике в виде тепла при воздействии на него электрического поля, называется диэлектрическими потерями.

 

Мерой потерь является плотность мощности тепловой энергии, то есть, количество тепла, выделяемого в единице объёма материала за единицу времени [w] = [Вт / м3].

При воздействии электрического поля в любом материалле выделяется тепло в том числе и в диэлектрике. Потери в диэлектриках вызываются различными процессами, поэтому их подразделяют на несколько видов (рисунок 2.2)

                              ДИЭЛЕКТРИЧЕСКИЕ ПОТЕРИ

     
 


Связанные с током проводимости                   Связанные с током смещения

Jпр = g Е                                                   Jсм = dD/dt (поляризацией)

 

Потери проводимости                           Релаксационные потери

Ионизационные потери                        Резонансные потери

Миграционные потери                          Сегнетоэлектрические потери

 

                  Рисунок 2.2 – Виды диэлектрических потерь

 

Как следует из рисунка существуют две главные причины потерь. Первая причина – сквозной ток, или ток проводимости, обусловленный наличием некоторого количества свободного заряда, создающего проводимость. Вторая причина – поляризация. Поляризация, как и любой реальный физический процесс, сопровождается потерей определённой порцией энергии при смещении связанного заряда (при возникновении тока 0,смещения).

 

Потери проводимости. Для большинства твёрдых диэлектриков сквозная проводимость обусловлена движением слабо закреплённых ионов, находящихся в относительно неглубоких потенциальных ямах. Движение ионов носит характер отдельных скачков, вызванных сообщением им со стороны отдельного коллектива частиц порций энергии, достаточных для преодоления барьеров. Электрическое поле, создаёт дисбаланс в вероятности скачков против и по направлению поля, и за счёт этого движение происходит преимущественно в одном направлении.

Ионизационные потери возникают в диэлектриках, имеющих внутри себя газообразные поры. Примером может служить керамика, или некоторые рыхлые полимеры. Электрическая прочность газов относительно низка, поэтому, если в диэлектрике создано достаточно сильное поле, то газообразные включения пробиваются, и в них зажигаются так называемые частичные разряды. В разряде выделяется тепло, которое составляет часть потерь диэлектрика. Частичные разряды могут быть причиное постепенного разрушения материала за счёт взаимодействия ионов и электронов, ускоренны в разряде, с основным веществом. Постепенная эрозия вещества при частичных разрядах приводит к старению и, в конце концов, к пробою диэлектрика.

Особенностью ионизационных потерь является их сильная зависимость от напряжения выше некоторого порогового значения Е0.

Ионизационные токи, как и другие токи проводимости, млжно охарактеризовать величиной проводимости, однако проводимость будет сложным образом зависима от напряжённости поля.


Миграционные потери имеют место в сильно неоднородных диэлектриках, состоящих из отдельных фаз. Даже если прохождение свободных зарядов сквозь границы раздела фаз затруднено, свободные заряды могут мигрировать в пределах зёрен, создавая кратковременные токи проводимости и потери. Миграционные потери дают максимумы на частотных зависимостях тангенса угла диэлектрических потерь, подобные релаксационным максимумам.

Релаксационные потери. В случае, если в диэлектрике значительная релаксационная поляризация, то неизбежно возникают потери связанные с этой поляризацией. В процессе смещения связанных зарядов возникают силы сопротивления со стороны окружающих молекул, подобные силам трения. При этом, каждый диполь передаёт материалу определённую порцию энергии. Как только смещение произошло, тепловые потери прекращаются. Поэтому, говорить о релаксационных потерях имеет смысл лишь тогда, когда на диэлектрик действует переменное поле си смещение зарядов совершается периодически.

В силу инерционности установления релаксационной поляризации, при скачкообразном изменении внешнего поля, равновесная поляризованность (для данной напряжённости) может установиться лишь через некоторое время.

Резонансные потери. Потери, создаваемые упругими видами поляризации, пренебрежимо малы если поляризация происходит под действием переменных полей радиочастотного диапазона. Из-за малой амплитуды смещения частиц, они остаются в поле упругих сил. В условиях резонанса (инфракрасный диапазон частот) может резко измениться амплитуда и характер колебаний частиц, что приводит к нарушению условия упругости сил и возникновению потерь. Поэтому, резкому изменению диэлектрической проницаемости при резонансе частиц соответствует максимум тангенса диэлектрических потерь.

Сегнетоэлектрические потери обусловлены движением границ доменов в диэлектриках, обладающих спонтанной поляризацией (такие диэлектрики называют сегнетоэлектриками). Эти потери существенны даже у условиях предельно низких частот и определяются чистотой и совершенством внутренней структуры кристалла. О больших потерях в сегнетоэлектриках может свидетельствовать ярко выраженная петлеобразность характеристики D(E).





Магнитные материалы.

Дата: 2019-05-28, просмотров: 272.