Двигатели внутреннего сгорания
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Двигатели внутреннего сгорания

Тепловое расширение

Поршневые двигатели внутреннего сгорания

Классификация ДВС

Основы устройства поршневых ДВС

Принцип работы 

Принцип действия четырехтактного карбюраторного двигателя   

Принцип действия четырехтактного дизеля  

Принцип действия двухтактного двигателя   

Рабочий цикл четырехтактного двигателя

Рабочие циклы двухтактных двигателей

ПОКАЗАТЕЛИ, ХАРАКТЕРИЗУЮЩИЕ РАБОТУ ДВИГАТЕЛЕЙ

Среднее индикаторное давление и индикаторная мощность   

Эффективная мощность и средние эффективные давления

Индикаторный КПД и удельный индикаторный расход топлива   

Эффективный КПД и удельный эффективный расход топлива

Тепловой баланс двигателя  

Инновации  

Введение

 

Значительный рост всех отраслей народного хозяйства требует перемещения большого количества грузов и пассажиров. Высокая маневренность, проходимость и приспособленность для работы в различных условиях делает автомобиль одним из основных средств перевозки грузов и пассажиров.

Важную роль играет автомобильный транспорт в освоении восточных и нечерноземных районов нашей страны. Отсутствие развитой сети железных дорог и ограничение возможностей использования рек для судоходства делают автомобиль главным средством передвижения в этих районах.

Автомобильный транспорт в России обслуживает все отрасли народного хозяйства и занимает одно из ведущих мест в единой транспортной системе страны. На долю автомобильного транспорта приходится свыше 80% грузов, перевозимых всеми видами транспорта вместе взятыми, и более 70% пассажирских перевозок.

Автомобильный транспорт создан в результате развития новой отрасли народного хозяйства - автомобильной промышленности, которая на современном этапе является одним из основных звеньев отечественного машиностроения.

Начало создания автомобиля было положено более двухсот лет назад (название "автомобиль" происходит от греческого слова autos - "сам" и латинского mobilis - "подвижный"), когда стали изготовлять "самодвижущиеся" повозки. Впервые они появились в России. В 1752 г. русский механик-самоучка крестьянин Л.Шамшуренков создал довольно совершенную для своего времени "самобеглую коляску", приводимого в движение силой двух человек. Позднее русский изобретатель И.П.Кулибин создал "самокатную тележку" с педальным приводом. С появлением паровой машины создание самодвижущихся повозок быстро продвинулось вперед. В 1869-1870 гг. Ж.Кюньо во Франции, а через несколько лет и в Англии были построены паровые автомобили. Широкое распространение автомобиля как транспортного средства начинается с появлением быстроходного двигателя внутреннего сгорания. В 1885 г. Г.Даймлер (Германия) построил мотоцикл с бензиновым двигателем, а в 1886 г. К.Бенц - трехколесную повозку. Примерно в это же время в индустриально развитых странах (Франция, Великобритания, США) создаются автомобили с двигателями внутреннего сгорания.

В конце XIX века  в ряде стран возникла автомобильная промышленность. В царской России неоднократно делались попытки организовать собственное машиностроение. В 1908 г. производство автомобилей было организовано на Русско-Балтийском вагоностроительном заводе в Риге. В течение шести лет здесь выпускались автомобили, собранные в основном из импортных частей. Всего завод построил 451 легковой автомобиль и небольшое количество грузовых автомобилей. В 1913 г. автомобильный парк в России составлял около 9000 автомобилей, из них большая часть - зарубежного производства. После Великой Октябрьской социалистической революции практически заново пришлось создавать отечественную автомобильную промышленность. Начало развития российского автомобилестроения относится к 1924 году, когда в Москве на заводе АМО были построены первые грузовые автомобили АМО-Ф-15.

В период 1931-1941 гг. создается крупносерийное и массовое производство автомобилей. В 1931 г. на заводе АМО началось массовое производство грузовых автомобилей. В 1932 г. вошел в строй завод ГАЗ.

В 1940 г. начал производство малолитражных автомобилей Московский завод малолитражных автомобилей. Несколько позже был создан Уральский автомобильный завод. За годы послевоенных пятилеток вступили в строй Кутаисский, Кременчугский, Ульяновский, Минский автомобильные заводы. Начиная с конца 60-х гг., развитие автомобилестроения характеризуется особо быстрыми темпами. В 1971 г. вступил в строй Волжский автомобильный завод им. 50-летия СССР.

За последние годы заводами автомобильной промышленности освоены многие образцы модернизированной и новой автомобильной техники, в том числе для сельского хозяйства, строительства, торговли, нефтегазовой и лесной промышленности.

 

Тепловое расширение

 

Тепловое расширение - изменение размеров тела в процессе его изобарического нагревания  (при постоянном давлении). Количественно тепловое расширение характеризуется температурным коэффициентом объемного расширения B=(1/V)*(dV/dT)p, где V - объем, T - температура, p - давление. Для большинства тел B>0 (исключением является, например, вода, у которой в интервале температур от 0 C до 4 C B<0). Для идеального газа B=1/T, у жидкостей и твердых тел зависимость B от T значительно слабее. Для твердых тел наряду с B вводят температурный коэффициент линейного расширения a, равный отношению относительного изменения длины тела вдоль рассматриваемого направления при изобарическом нагревании тела к приращению температуры: a=(1/l)*(dl/dT)p, где l - длина тела. Для изотропных тел B=3a.

 

Области применения теплового расширения.

 

Тепловое расширение нашло свое применение в различных современных

технологиях.

В частности можно сказать о применении теплового расширения газа в теплотехники. Так, например, это явление применяется в различных тепловых двигателях, т.е. в двигателях внутреннего и внешнего сгорания: в роторных двигателях, в реактивных двигателях, в турбореактивных двигателях, на газотурбинных установках, двигателях Ванкеля, Стирлинга, ядерных силовых установках. Тепловое расширение воды используется в паровых турбинах и т.д. Все это в свою очередь нашло широкое распространение в различных отраслях народного хозяйства.

Например, двигатели внутреннего сгорания наиболее широко используются на транспортных установках и сельскохозяйственных машинах. В стационарной энергетике двигатели внутреннего сгорания широко используются на небольших электростанциях, энергопоездах и аварийных энергоустановках. ДВС получили большое распространение также в качестве привода компрессоров и насосов для подачи газа, нефти, жидкого топлива и т.п. по трубопроводам, при производстве разведочных работ, для привода бурильных установок при бурении скважин на газовых и нефтяных промыслах. Турбореактивные двигатели широко распространены в авиации. Паровые турбины - основной двигатель для привода электрогенераторов на ТЭС. Применяют паровые турбины также для привода центробежных воздуходувок, компрессоров и насосов. Существуют даже паровые автомобили, но они не получили распространения из-за конструктивной сложности.

Тепловое расширение применяется также в различных тепловых реле,

принцип действия которых основан на линейном расширении трубки и

стержня, изготовленных из материалов с различным температурным

коэффициентом линейного расширения.

 

Классификация ДВС

  

Как было выше сказано, в качестве энергетических установок автомобилей наибольшее распространение поучили ДВС, в которых процесс сгорания топлива с выделением теплоты и превращением ее в механическую работу происходит непосредственно в цилиндрах. Но в большинстве современных автомобилей установлены двигатели внутреннего сгорания, которые классифицируются по различным признакам:

По способу смесеобразования - двигатели с внешним смесеобразованием, у которых горючая смесь приготовляется вне цилиндров (карбюраторные и газовые), и двигатели с внутренним смесеобразованием (рабочая смесь образуется внутри цилиндров) - дизели;

По способу осуществления рабочего цикла - четырехтактные и двухтактные;

По числу цилиндров - одноцилиндровые, двухцилиндровые и многоцилиндровые;

По расположению цилиндров - двигатели с вертикальным или наклонным

расположением цилиндров в один ряд, V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным);

По способу охлаждения - на двигатели с жидкостным или воздушным

охлаждением;

По виду применяемого топлива - бензиновые, дизельные, газовые и

многотопливные ;

По степени сжатия. В зависимости от степени сжатия различают двигатели высокого (E=12...18) и низкого (E=4...9) сжатия;

По способу наполнения цилиндра свежим зарядом:

а) двигатели без наддува, у которых впуск воздуха или горючей смеси

осуществляется за счет разряжения в цилиндре при всасывающем ходе

поршня;

б) двигатели с наддувом, у которых впуск воздуха или горючей смеси в

рабочий цилиндр происходит под давлением, создаваемым компрессором, с

целью увеличения заряда и получения повышенной мощности двигателя;

По частоте вращения: тихоходные, повышенной частоты вращения,

быстроходные;

По назначению различают двигатели стационарные, автотракторные,

судовые, тепловозные, авиационные и др.

 

Принцип работы

 

Действие поршневого двигателя внутреннего сгорания основано на использовании работы теплового расширения нагретых газов во время движения поршня от ВМТ к НМТ. Нагревание газов в положении ВМТ достигается в результате сгорания в цилиндре топлива, перемешанного с воздухом. При этом повышается температура газов и давления. Т.к. давление под поршнем равно атмосферному, а в цилиндре оно намного больше, то под действием разницы давлений поршень будет перемещаться вниз, при этом газы - расширяться, совершая полезную работу. Вот здесь-то и дает о себе знать тепловое расширение газов, здесь и заключается его технологическая функция: давление на поршень. Чтобы двигатель постоянно вырабатывал механическую энергию, цилиндр необходимо периодически заполнять новыми порциями воздуха через впускной клапан и топливо через форсунку или подавать через впускной клапан смесь воздуха с топливом. Продукты сгорания топлива после их расширения удаляются из цилиндра через впускной клапан. Эти задачи выполняют механизм газораспределения, управляющий открытием и закрытием клапанов, и система подачи топлива.

 

И дизельных двигателей

 

Рабочий цикл четырехтактного двигателя состоит из пяти процессов:

впуск, сжатие, сгорание, расширение и выпуск, которые совершаются за

четыре такта или за два оборота коленчатого вала.

Графическое представление о давлении газов при изменении объема в

цилиндре двигателя в процессе осуществления каждого из четырех циклов

дает индикаторная диаграмма.  Она может быть построена по данным

теплового расчета или снята при работе двигателя с помощью

специального прибора - индикатора.

Процесс впуска. Впуск горючей смеси осуществляется после выпуска из

цилиндров отработавших газов от предыдущего цикла. Впускной клапан

открывается с некоторым опережением до ВМТ, чтобы получить к моменту прихода поршня к ВМТ большее проходное сечение у клапана. Впуск горючей смеси осуществляется за два периода. В первый период смесь поступает при перемещении поршня от ВМТ к НМТ вследствие разряжения, создающегося в цилиндре. Во второй период впуск смеси происходит при перемещении поршня от НМТ к ВМТ в течение некоторого времени, соответствующего 40 - 70 поворота коленчатого вала за счет разности давлений (ротора), и скоростного напора смеси. Впуск горючей смеси заканчивается закрытием впускного клапана. Горючая смесь, поступившая в цилиндр, смешивается с остаточными газами от предыдущего цикла и образует горючую смесь. Давление смеси в цилиндре в течение процесса впуска составляет 70 - 90 кПа и зависит от гидравлических потерь во впускной системе двигателя. Температура смеси в конце процесса впуска повышается до 340 - 350 К вследствие соприкосновения ее с нагретыми деталями двигателя и смешивания с остаточными газами, имеющими температуру 900 - 1000 К.

Процесс сжатия. Сжатие рабочей смеси, находящейся в цилиндре

двигателя, происходит при закрытых клапанах и перемещении поршня в

ВМТ. Процесс сжатия протекает при наличии теплообмена между рабочей

смесью и стенками (цилиндра, головки и днища поршня). В начале сжатия температура рабочей смеси ниже температуры стенок, поэтому теплота передается смеси от стенок. По мере дальнейшего сжатия температура смеси повышается и становится выше температуры стенок, поэтому теплота от смеси передается стенкам. Таким образом, процесс сжатия осуществляется по палитре, средний показатель которой n=1.33...1.38. Процесс сжатия заканчивается в момент воспламенения рабочей смеси. Давление рабочей смеси в цилиндре в конце сжатия 0.8 - 1.5МПа, а температура 600 - 750 К.

Процесс сгорания. Сгорание рабочей смеси начинается раньше прихода

поршня к ВМТ, т.е. когда сжатая смесь воспламеняется от электрической искры. После воспламенения фронт пламени горящей свечи от свечи распространяется по всему объему камеры сгорания со скоростью 40 - 50 м/с. Несмотря на такую высокую скорость сгорания, смесь успевает сгореть за время, пока коленчатый вал повернется на 30 - 35 . При сгорании рабочей смеси выделяется большое количество теплоты на участке, соответствующим 10 - 15 до ВМТ и 15 - 20 после НМТ, вследствие чего давление и температура образующихся в цилиндре газов быстро возрастают.

В конце сгорания давление газов достигает 3 - 5 МПа, а температура 2500 - 2800 К.

Процесс расширения. Тепловое расширение газов, находящихся в цилиндре двигателя, происходит после окончания процесса сгорания при перемещении поршня к НМТ. Газы, расширяясь, совершают полезную работу. Процесс теплового расширения протекает при интенсивном теплообмене между газами и стенками (цилиндра, головки и днища поршня). В начале расширения происходит догорание рабочей смеси, вследствие чего образующиеся газы получают теплоту. Газы в течение всего процесса теплового расширения отдают теплоту стенкам. Температура газов в процессе расширения уменьшается, следовательно, изменяется перепад температуры между газами и стенками. Процесс теплового расширения происходит по палитре, средний показатель которой n2=1.23...1.31. Давление газов в цилиндре в конце расширения 0.35 - 0.5 МПа, а температура 1200 - 1500 К.

Процесс выпуска. Выпуск отработавших газов начинается при открытии выпускного клапана, т.е. за 40 - 60 до прихода поршня в НМТ. Выпуск газов из цилиндра осуществляется за два периода. В первый период выпуск газов происходит при перемещении поршня за счет того, что давление газов в цилиндре значительно выше атмосферного.В этот период из цилиндра удаляется около 60% отработавших газов со скоростью 500 - 600 м/с. Во второй период выпуск газов происходит при перемещении поршня (закрытие выпускного клапана) за счет выталкивающего действия поршня и инерции движущихся газов. Выпуск отработавших газов заканчивается в момент закрытия выпускного клапана, т. е. через 10 – 20 после прихода поршня в ВМТ. Давление газов в цилиндре в процессе выталкивания 0.11 - 0.12 МПа, температура газов в конце процесса выпуска 90 - 1100 К.

 

Тепловой баланс двигателя

 

Из анализа рабочего цикла двигателя следует, что только часть теплоты, выделяющейся при сгорании топлива, используется на полезную работу, остальная же часть составляет тепловые потери. Распределение теплоты, полученной при сгорании вводимого в цилиндр топлива, называют тепловым балансом, который обычно определяется экспериментальным путем. Уравнение теплового баланса имеет вид Q=Qe+Qг+Qн.с+Qост, где Q - теплота топлива, введенная в двигатель Qe - теплота, превращенная в полезную работу; Qохл - теплота, потерянная охлаждающим агентом (водой или воздухом); Qг - теплота, потерянная с отработавшими газами; Qн.с - теплота, потерянная вследствие неполного сгорания топлива, Qост - остаточный член баланса, который равен сумме всех неучтенных потерь.

Количество располагаемой (введенной) теплоты (кВт) Q=Gт*(Q^p)н. Теплота (кВт), превращенная в полезную работу, Qe=Ne. Теплота (кВт), потерянная с охлаждающей водой, Qохл=Gв*св*(t2-t1), где Gв - количество воды, проходящей через систему , кг/с; св – теплоемкость воды, кДж/(кг*К) [св=4.19 кДж/(кг*К)]; t2 и t1 - температуры воды при входе в систему и при выходе из нее, С.

Теплота (кВт), теряемая с отработавшими газами,

Qг=Gт*(Vp*срг*tг-Vв*срв*tв), где Gт - расход топлива, кг/с; Vг и Vв - расходы газов и воздуха, м^3/кг; срг и срв - средние объемные теплоемкости газов и воздуха при постоянном давлении, кДж/(м^3*К); tр и tв - температура отработавших газов и воздуха, С.

Теплота, теряемая вследствие неполноты сгорания топлива, определяется опытным путем.

Остаточный член теплового баланса (кВт) Qост=Q-(Qe+Qохл+Qг+Qн.с).

Тепловой баланс можно составить в процентах от всего количества введенной теплоты, тогда уравнение баланса примет вид: 100%=qe+qохл+qг+qн.с+qост,   где qe=(Qe/Q*100%); qохл=(Qохл/Q)*100%;

qг=(Qг/Q)*100% и т.д.

 

Инновации

 

В последнее время все большее применение получают поршневые двигатели с принудительным наполнением цилиндра воздухом повышенного

давления, т.е. двигатели с наддувом. И перспективы двигателестроения связаны, на мой взгляд, с двигателями данного типа, т.к. здесь имеется огромный резерв неиспользованных конструкторских возможностей, и есть над чем подумать, а во-вторых, считаю, что большие перспективы в будущем именно у этих двигателей. Ведь наддув позволяет увеличить заряд цилиндра воздухом и, следовательно, количество сжимаемого топлива, а тем самым повысить мощность двигателя.

Для привода нагнетателя в современных двигателях обычно используют

энергию отработавших газов. В этом случае отработавшие в цилиндре газы, которые имеют в выпускном коллекторе повышенное давление, направляют в газовую турбину, приводящую во вращение компрессор.

Согласно схеме газотурбинного наддува четырехтактного двигателя, отработавшие газы из цилиндров двигателя поступают в газовую турбину, после которой отводятся в атмосферу. Центробежный компрессор, вращаемый турбиной, засасывает воздух из атмосферы и нагнетает его под давлением: 0.130...0.250 МПа в цилиндры. Помимо использования энергии выхлопных газов достоинством такой системы наддува перед приводом компрессора от коленчатого вала является саморегулирование, заключающееся в том, что с увеличением мощности двигателя соответственно возрастают давление и температура отработавших газов, а следовательно мощность турбокомпрессора. При этом возрастают давление и количество подаваемого им воздуха.

В двухтактных двигателях турбокомпрессор должен иметь более высокую мощность, чем в четырехтактных, т.к. при продувке часть воздуха проходит в выпускные окна, транзитный воздух не используется для зарядки цилиндра и понижает температуру выпускных газов. Вследствие этого на частичных нагрузках энергии отработавших газов оказывается недостаточно для газотурбинного привода компрессора. Кроме того, при газотурбинном наддуве невозможен запуск дизеля. Учитывая это, в двухтактных двигателях обычно применяют комбинированную систему наддува с последовательной или параллельной установкой компрессора с газотурбинным и компрессор с механическим приводом.

При наиболее распространенной последовательной схеме комбинированного наддува компрессор с газотурбинным приводом производит только частичное сжатие воздуха, после чего он дожимается компрессором, приводимым во вращение от вала двигателя. Благодаря применению наддува возможно повышение мощности по сравнению с мощностью двигателя без наддува от 40% до 100% и более.

На мой взгляд, основным направлением развития современных поршневых

двигателей с воспламенением от сжатия будет являться значительное форсирование их по мощности за счет применения высокого наддува в сочетании с охлаждением воздуха после компрессора.

В четырехтактных двигателях в результате применения давления наддува до 3.1...3.2 МПа в сочетании с охлаждением воздуха после компрессора достигается среднее эффективное давление Pe=18.2...20.2 МПа. Привод компрессора в этих двигателях газотурбинный. Мощность турбины достигает 30% от мощности двигателя, поэтому повышаются требования к КПД турбины и компрессора. Неотъемлемым элементом системы наддува этих двигателей должен являться охладитель воздуха, установленный после компрессора. Охлаждение воздуха производится водой, циркулирующей с помощью индивидуального водяного насоса по контуру: воздухоохладитель - радиатор для охлаждения воды атмосферным воздухом.

Перспективным направлением развития поршневых двигателей внутреннего сгорания является более полное использование энергии выпускных газов в турбине, обеспечивающей мощность компрессора, нужную для достижения заданного давления наддува. Избыточная мощность в этом случае передается на коленчатый вал дизеля. Реализация такой схемы наиболее возможна для четырехтактных двигателей.

Заключение

 

Итак, мы видим, что двигатели внутреннего сгорания - очень сложный механизм. И Функция, выполняемая тепловым расширением в двигателях внутреннего сгорания не так проста, как это кажется на первый взгляд. Да и не существовало бы двигателей внутреннего сгорания без использования теплового расширения газов. И в этом мы легко убеждаемся, рассмотрев подробно принцип работы ДВС, их рабочие циклы - вся их работа основана на использовании теплового расширении газов. Но ДВС - это только одно из конкретных применений теплового расширения. И судя по тому, какую пользу приносит тепловое расширение людям через двигатель внутреннего сгорания, можно судить о пользе данного явления в других областях человеческой деятельности.

И пускай проходит эра двигателя внутреннего сгорания, пусть у них есть много недостатков, пусть появляются новые двигатели, не загрязняющие внутреннюю среду и не использующие функцию теплового расширения, но первые еще долго будут приносить пользу людям, и люди через многие сотни лет будут по доброму отзываться о них, ибо они вывели человечество на новый уровень развития, а пройдя его, человечество поднялось еще выше.

 

 

Двигатели внутреннего сгорания

Тепловое расширение

Дата: 2019-05-28, просмотров: 222.