Запишем это в виде (максимально используйте карман при наборе строк)
8;max((sum((U-ut(V)).^2).^.5./sum(U.^2).^.5)./(sum((F-f(V)).^2).^.5./sum(F.^2).^.5))
и получим 3.6484e+3, что меньше c(A)=6.6040e+3, так что и здесь мы не обнаружили противоречия.
Если подойти к оценке погрешности упрощенно, построив график
9;gm=max(g); plot(A\[f-gm,f,f+gm])
то все три линии на нем практически совпадут. Таким способом можно моделировать ошибку, если преобразование A-1 монотонно, т.е. если при f1<f2 обязательно u1<u2 или, наоборот, обязательно u1>u2. Но у нас это не так: на графике (эта строка получается из строки 9)
10;gm=100*max(g);plot(A\[f-gm,f,f+gm])
желтая линия (она соответствует решению для правой части f-gm<f) то выше, то ниже фиолетовой. Именно из-за немонотонности преобразования A-1 получается такой заметный разброс в U. С помощью этого приема можно быстро выяснить монотонность преобразования y=Q(x) (не обязательно линейного), что далеко не всегда удается определить теоретически: если все отклики Y=Q(X), x-a<X<x+a, a>0, лежат между Q(x-a) и Q(x+a), то преобразование Q монотонно, и нужно лишь взять значение a таким, чтобы результат был виден на графике (для этого нам пришлось увеличить max(g) в 100 раз).
6.Посмотрим, как изменятся результаты нашего примера при увеличении m - порядка матрицы A. Выполним, не меняя смысла задачи, отредактированную строку 1 предыдущего примера
1;clear all, hx=.01; x=1:hx:5; A=toeplitz(exp(x)); ut=sin(x)'; f=A*ut;u=A\f; plot([ut,u]), c=cond(A)
Здесь шаг hx уменьшен в 10 раз, так что теперь порядок m=401 – довольно высокий; c(A)= 6.0804e5 возросло почти в 100 раз, т.е. обусловленность A заметно ухудшилась (примерно в 102 раз), но
2;max(abs(u-ut)) (=1.3153e-9)
еще достаточно мал, хотя и возрос примерно в 103 раз, т.е. больше, чем c(A). Такое расхождение с теорией как бы предупреждает о том, что даже при сохранении смысла задачи увеличение ее размерности не позволяет автоматически применять критерий числа обусловленности к оценке ошибок округления. К выбору числа m нужно всегда относиться с повышенным вниманием.
Чтобы получить представление о собственных векторах преобразования A, выполним строку
3;[V,D]=eig(A); D=V'*V; m=length(x); D(1:m+1:m^2)=0; mcv=max(abs(D(:)))
и получим mcv=2.2985e-15, т.е. степень ортогональности остается удивительно высокой. Жордановы клетки порядка выше первого могут быть тогда, когда mcv(A)>0.99.
Мы рассмотрели этот пример так подробно, чтобы показать исключительно высокие возможности MATLAB'а в том, что касается анализа результатов.
Заключение
MATLAB – высокоуровневая система программирования, позволяющая резко сократить затраты труда при проверке алгоритмов и проведении прикидочных расчетов. Возможность проведения больших расчетов на MATLAB'е определяется в основном теми затратами времени, на которые может пойти пользователь: здесь приходится выбирать между легкостью и наглядностью программирования и представления результатов, с одной стороны, и затратами времени на счет – с другой. Система очень удобна для освоения и апробации численных методов, что мы и хотим показать здесь прежде всего. Именно поэтому она рекомендуется как одна из основных для физиков и многих других естественно-научных специальностей в ведущих американских университетах. Детальное освоение любой большой программной системы – это достаточно длительный процесс, основу которого составляют индивидуальная работа, и наши занятия призваны дать лишь первоначальный импульс этому процессу в отношении MATLAB'а. Темы 2 – 4 представляют сравнительно элементарное введение, а в остальных рассматриваются более сложные примеры, показывающие, как можно использовать программные и графические возможности системы для исследования численных алгоритмов.
Литература
1. Using MATLAB. Version 5.2. The Mathworks, Inc., 1997. 531 p. MATLAB 5.2 Product Family New Features. Version 5.2. The Mathworks, Inc., 1998. 202 p.
2. Using MATLAB Graphics. Version 5.2. The Mathworks, Inc., 1997. 372 p.
3. MATLAB Functions Reference (Volumes 1 and 2). Version 5. The Mathworks, Inc., 1998. 819 p., 586 p.
4. Дьяконов В.П. Справочник по применению системы PC MatLab. М., Физматлит, 1993 112 с.
5. Потемкин В.Г. Система MATLAB. Справочное пособие. М., "Диалог-МИФИ", 1997. 350 с.
6. Гультяев А. MATLAB 5.2. Имитационное моделирование в среде Windows. СПб, "Коронс-принт", 1999, 288 с.
7. Дьяконов В.П., Абраменкова К.В. MATLAB 5. Система символьной математики. М., Нолидж, 1999, 633 с.
8. Лазарев Ю.Ф. MATLAB 5.х. Киев, Изд. группа BHV, 2000, 384 с. ("Б-ка студента").
9. Медведев В.С., Потёмкин В.Г. Control System Toolbox. MATLAB 5 для студентов. М., "Диалог-МИФИ", 1997, 287 с.
10. Потёмкин, В.Г. Введение в MATLAB. М., "Диалог-МИФИ", 2000, 350 с.
11. Потёмкин, В.Г. Система инженерных расчетов MATLAB 5.х. В 2-х томах. М., "Диалог-МИФИ", 1999, 366 с., 304 с.
12. Рудаков П.И., Сафонов В.И. Обработка сигналов и изображений. MATLAB 5x. М., Диалог-МИФИ", 2000, 413 с. ("Пакеты прикладных программ").
Дата: 2019-05-28, просмотров: 188.