Понятие качества пищевых продуктов. Общие пищевые законоположения и инструкции
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Лекция №1

Тема: Пищевая химия, как дисциплина. Основные направления пищевой химии.

1 Предмет, содержание и основные направления дисциплины.

2 Понятие качества пищевых продуктов. Общие пищевые законоположения и инструкции.

3 Проблемы повышения качества пищевых продуктов.

 

1 Предмет, содержание и основные направления дисциплины.

Среди основных проблем, стоящих перед обществом в наше время, является обеспечение населения земного шара продуктами питания, так как от состава и качества продуктов питания, зависит обеспеченность нашего организма пластическим материалом и энергией, работоспособность, здоровье, способность человека к воспроизводству. Одной из важнейших причин ухудшения показателей здоровья населения во всём Мире на сегодняшний день является неудовлетворительное, неполноценное питание, что определяется рядом факторов:

—избыточное потребление животных жиров;

—дефицит полиненасыщенных жирных кислот;

—дефицит полноценных (животных) белков;

—дефицит витаминов (аскорбиновой кислоты, рибофлавина (В2), тиамина (В1), фолиевой кислоты, ретинола (А) и (β-каротина, токоферола и других);

—дефицит минеральных веществ (кальция, железа);

—дефицит микроэлементов (селена, цинка, йода, фтора);

—дефицит пищевых волокон.

Таким образом, организация здорового питания населения – сложный и многофакторный процесс, зависящий от экологической обстановки, обеспеченности населения, достижений медицины, фундаментальных наук (физика, химия, микробиология), новых технологических возможностей, которые появились у производителей продуктов питания. Все это требует коренного совершенствования технологии получения традиционных продуктов, создания нового поколения пищевых продуктов. Эти направления в значительной степени охватываются областью науки – пищевая химия.

Пищевая химия – один из разделов химической науки, её основной предмет – это область питания человека. Пищевая химия занимается вопросами химического состава пищевых продуктов, преобразований нутриентов в технологическом потоке и в нашем организме, разработкой новых методов анализа и системы управления качеством.

 

Проблемы повышения качества пищевых продуктов.

Удовлетворение потребностей населения в высококачественных продуктах питания – одна из основных социально-экономических проблем сегодняшнего дня.

Политике в области качества сегодня в нашей стране отводится приоритетная роль. В связи с чем контроль качества пищевых продуктов осуществляется на различных уровнях: производственном, ведомственном, государственном, общественном.

Производственный контроль – это контроль соблюдения стандартов, медико-биологических требований и санитарных норм на всех этапах производства, включающих приёмку и хранение сырья, технологическую обработку, хранение и реализацию готовой продукции. Важное место в производственном контроле отводится испытательной лаборатории.

Ведомственный и государственный контроль основывается на работе в соответствующих министерств и ведомств (Министерство здравоохранения, Министерство сельского хозяйства и продовольствия, Министерство торговли, Государственный комитет по стандартизации, Комитет государственного контроля и др.), при которых созданы специальные контрольно-ревизионные подразделения, проводящие ревизии и проверки, а также отслеживающие развитие системы контроля качества пищевой продукции в Республике Беларусь и за рубежом.

Общественный контроль является действенным рычагом влияния потребителя на качество продукции, помогает осуществлять практическую схему взаимоотношений потребителя, изготовителя, продавца и исполнителя.

 


 


Лекция №2

Пищевых систем.

 

1 Проблема белкового дефицита на Земле. Нормы физиологической потребности в белках.

2 Белково-калорийная недостаточность и ее последствия.

3 Аминокислоты и функции некоторых аминокислот в организме.

4 Незаменимые аминокислоты. Пищевая и биологическая ценность белков.

 

Лекция №3

В питании человека.

1 Важнейшие группы пептидов и их физиологическая роль.

2 Характеристика белков пищевого сырья.

3 Новые формы белковой пищи.

4 Функциональные свойства белков.

 

Новые формы белковой пищи.

Сегодня в условиях постоянно растущего общества и ограниченности ресурсов перед человеком стоит необходимость создания современных продуктов питания, обладающих функциональными свойствами и отвечающих требованиям науки о здоровом питании.

Новые формы белковой пищи – это продуты питания, получаемые на основе различных белковых фракций продовольственного сырья с применением научно обоснованных способов переработки, и имеющие определённый химический состав, структуру и свойства.

Широкое признание получили различные растительные белковые источники: зернобобовые, хлебные и крупяные и побочные продукты их переработки, масличные; овощи и бахчёвые, вегетативная масса растений.

При этом для производства белковых продуктов преимущественно используются соя и пшеница.

Продукты переработки соевых белков подразделяются на три группы, отличающиеся по содержанию белка: муку и крупу получают путём помола в них содержится 40÷45% белка от общей массы продукта; соевые концентраты получают путём удаления водорастворимых компонентов, они содержат 65÷70% белка; соевые изоляты получают экстракцией белка, они содержат не менее 90% белка.

На основе сои получают текстурированные белковые продукты, в которых соевые белки используют, например, вместо белков мяса. Гидролизованные соевые белки называются модифицированными. Их используют как функциональные и вкусовые добавки к пище.

Сегодня на основе сои также выпускают соевое молоко, соевый соус, тофу (соевый творог) и др. продукты питания.

Из пшеницы или пшеничной муки методом водной экстракции получают сухую пшеничную клейковину с содержанием белка 75÷80%.

В то же время наличие лимитирующих аминокислот в растительных белках определяет их неполноценность. Выходом здесь является совместное использование различных белков, что обеспечивает эффект взаимного обогащения. Если при этом достигают повышения аминокислотного скора каждой незаменимой лимитирующей аминокислоты по сравнению отдельным использованием исходных белков, то говорят об эффекте простого обогащения, если после смешивания аминокислотный скор каждой аминокислоты превышает 1,0, то – это эффект истинного обогащения. Использование подобных сбалансированных белковых комплексов обеспечивает повышение усвояемости растительных белков до 80÷100%.

 

 

Лекция №4

Лекция №5

Строение и состав липидов

Липидами (от греч. lipos – эфир) называют сложную смесь эфироподобных органических соединений с близкими физико-химическими свойствами. Липиды широко используются при получении многих продуктов питания, являются важными компонентами пищевых продуктов, во многом определяя их пищевую и биологическую полноценность и вкусовые качества.

В растениях липиды накапливаются, главным образом, в семенах и плодах и варьируется от нескольких процентов в злаковых и крупяных культурах до десятков процентов в масличных культурах. У животных и рыб липиды концентрируются в подкожных, мозговой и нервной тканях. Содержание липидов в рыбе варьируется от 8 до 25%, у туш наземных животных оно сильно колеблется: 33% (свинина), 9,8% (говядина). В молоке различных видов животных содержание липидов колеблется от 1,7% в кобыльем молоке до 34,5% в молоке самки северного оленя.

Липиды не растворимы в воде (гидрофобны*), хорошо растворимы в органических растворителях (бензине, диэтиловом эфире, хлороформе и др.).

По химическому строению липиды являются производными жирных кислот, спиртов, альдегидов, построенных с помощью сложноэфирной, простой эфирной, фосфоэфирной, гликозидной связей. Липиды делят на две основные группы: простые и сложные липиды. К простым нейтральным липидам относят производные высших жирных кислот и спиртов: глицеролипиды, воски, эфиры холестерин, гликолипиды и другие соединения. Молекулы сложных липидов содержат в своем составе не только остатки высокомолекулярных карбоновых кислот, но и фосфорную, серную кислоты или азот.

Наиболее важная и распространенная группа простых нейтральных липидов – ацилглицерины (или глицериды). Это сложные эфиры глицерина и высших карбоновых кислот. Они составляют основную массу липидов (иногда до 95%) и, по существу, именно их называют жирами или маслами. В состав жиров входят, главным образом, триацилглицерины (I), реже диацилглицерины (II) и моноацилглицерины (III):

Важнейшими представителями сложных липидов являются фосфолипиды – обязательные компоненты растений (0,3-1,7%). Их молекулы построены из остатков спиртов (глицерина, сфингозина), жирных кислот, фосфорной кислоты (Н3РО4), а также содержат азотистые основания, остатки аминокислот и некоторых других соединений.

Молекулы большинства фосфолипидов построены по общему принципу. В их состав входят, с одной стороны, гидрофобные, отличающиеся низким сродством к воде, с другой – гидрофильные группы (остатки фосфорной кислоты и азотистого основания). Они получили название «полярных головок». Благодаря этому свойству (амфифильность) фосфолипиды часто создают границу раздела (мембрану) между водой и гидрофобной фазой в системах живых организмов и пищевых продуктах.

Липиды выполняют не только энергетическую функцию (свободные липиды), но и выполняют структурную функцию: вместе с белками и углеводами входят в состав мембран клеток и клеточных структур. По массе структурные липиды со­ставляют значительно меньшую группу липидов (в масличных семенах 3-5%). Это трудноизвлекаемые «связанные» и «прочносвязанные» липиды.

 

 

Лекция №6

Лекция №7

Общие сведения о витаминах

Витамины – низкомолекулярные органические соединения различной химической природы, биорегуляторы процессов, протекающих в живом организме. Для нормальной жизнедеятельности человека витамины необходимы в небольших количествах, но поскольку организм не может синтезировать витамины, то они должны поступать с пищей. При этом важно содержание в пище не только витаминов, но и их предшественников (провитаминов). Отсутствие или недостаток в организме витаминов вызывает болезни недостаточности: гиповитаминозы (болезни в результате длительного недостатка) и авитаминозы (болезни в результате отсутствия или резко выраженного глубокого дефицита витаминов). При гиповитаминозах наблюдается утомляемость, потеря аппетита, раздражительность, нестойкость к заболеваниям. При авитаминозах проявляются болезни, вызванные значительным дефицитом витаминов (бери-бери, цинга, пеллагра и др.).

Наиболее важными причинами гипо- и авитаминоза являются следующие:

1. Недостаточное поступление витаминов с пищей, связанное с их низким содержанием в рационе, снижением общего количества потребляемой пищи, потерями витаминов в ходе технологического потока.

2. Угнетение кишечной микрофлоры, продуцирующей некоторые витамины.

3. Нарушение ассимиляции усвоения витаминов из пищи.

4. Повышенная потребность в витаминах, связанная с особенностями физиологического состояния организма или интенсивной физической нагрузкой, особыми климатическими условиями.

При приеме витаминов в количестве, значительно превышающем физиологические нормы, могут развиться гипервитаминозы. Это особенно характерно для жирорастворимых витаминов.

Сейчас известно свыше тринадцати соединений, относящихся к витаминам. Все витамины помимо тривиального наименования имеют условное обозначение буквами латинского алфавита (А, В, С, D и т. д.).

По растворимости витамины могут быть разделены на две группы: водорастворимые (В1, В2, В6, РР, С и др.) и жирорастворимые (A, D, Е, К).

Имеется группа соединений, близких к витаминам по строению, которые, конкурируя с витаминами, могут занять их место в ферментных системах, но не в состоянии выполнить их функции. Они получили название антивитаминов.

Массовые обследования указывают на существование дефицита витаминов у большей части людей. Наиболее эффективный способ витаминной профилактики – обогащение витаминами массовых продуктов питания.

 

Лекция №8

Лекция №9

Общие свойства ферментов

Биохимические процессы, протекающие при хранении сырья и при производстве пищевых продуктов, связаны с действием собственных ферментов пищевого сырья, а также ферментов, вносимых в ходе технологического процесса в виде ферментных препаратов. Последние могут быть животного, растительного или микробного происхождения.

Наиболее древние ферментативные процессы, освоенные человеком – спиртовое и молочнокислое брожение, применение сычуга при приготовлении сыров, использование солода и плесневых грибов для осахаривания крахмалистого сырья, применение заквасок при изготовлении хлеба.

В настоящее время многие отрасли пищевой промышленности, в медицине и сельском хозяйстве основаны на использовании различных ферментативных процессов.

Ферменты – биологические катализаторы белковой природы. Ферменты ускоряют химические реакции в 100-1000 раз благодаря потому, что при взаимодействии с субстратом они образуют фермент-субстратный комплекс, и для этого требуется значительно более низкая энергия активации (по сравнению с протеканием реакции без фермента); на второй стадии этот комплекс распадается на продукты реакции и свободный фермент, который может взаимодействовать с новой молекулой субстрата.

Многие ферменты являются двухкомпонентными, то есть состоят из белковой части – апофермента и связанного с ним небелкового компонента – кофермента, участвующего в действии фермента в качестве обязательного кофактора. В качестве коферментов могут выступать витамины и их производные, нуклеотиды и нуклеозиды.

Единицы активности ферментов. Для характеристики активности ферментов используются различные едицицы:

—Стандартная единица фермента – это такое количество фермента, которое катализирует превращение одного микромоля данного субстрата за одну минуту при заданных условиях. Стандартная единица фермента обозначается буквой Е (единица) или буквой U (unit).

— Катал –каталитическая активность, способная осуществлять реакцию со скоростью равной 1 молю в секунду в заданной системе измерения активности. Каталитическая активность в 1 катал (кат) при практическом применении оказывается слишком большой величиной, поэтому в большинстве случаев каталитические активности выражают в микрокаталах (мккат), нанокаталах (нкат) или пикокаталах (пкат). Стандартная единица фермента находится с каталом в следующем соотношении: 1 Е (U) = 16,67 нкат.

В большинстве случаев ферменты обладают строгой специфичностью, а также лабильны, то есть могут изменять свою активность под действием рН, температуры, в присутствии активаторов и ингибиторов и др.

Активаторами называют вещества, которые повышают активность ферментов. В роли активаторов могут выступать некоторые металлы, аминокислоты и др. вещества. Ингибиторами называют вещества, снижающие активность ферментов.

 

 

Оксидоредуктазы

Полифенолоксидаза может катализировать окисление моно-, ди-, и полифенолов. С действием этого фермента связано образование темноокрашенных соединений – меланинов при окислении кислородом воздуха аминокислоты тирозина (потемнение срезов картофеля, яблок, грибов и других растительных тканей). В пищевой промышленности основной интерес к этому ферменту сосредоточен на предотвращении указанного ферментативного потемнения, что может быть достигнута путем тепловой инактивации фермента (бланшировка) или добавлением ингибиторов (NaHSO3, SO2, NaCl).

Каталаза катализирует разложение пероксида водорода по реакции самоокисления-самовосстановления. В живом организме каталаза защищает клетки от губительного действия перекиси водорода. Хорошим источником для получения промышленных препаратов каталазы являются культуры микроорганизмов и печень крупного рогатого скота.

Липоксигеназа катализирует окисление полиненасыщенных высокомолекулярных жирных кислот (линолевой и линоленовой) кислородом воздуха с образованием гидроперекисей:

Липоксигеназе принадлежит важная роль в процессах созревания пшеничной муки, связанных с улучшением ее хлебопекарных достоинств. При этом происходит осветление муки, укрепление клейковины, снижение активности протеолитических ферментов и другие положительные изменения.

Глюкозооксидаза окисляет глюкозу с образованием глюконовой кислоты. Высокоочищенные препараты глюкозооксидазы получают из плесневых грибов рода Aspergillus и Penicillium.

Препараты глюкозооксидазы нашли применение в пищевой промышленности как для удаления следов глюкозы, что необходимо при обработке пищевых продуктов, качество и аромат которых ухудшаются из-за того, что в них содержатся восстанавливающие сахара; например, при получении из яиц сухого яичного порошка.

 

Гидролитические ферменты

Для отрасли пищевой промышленности наибольший интерес представляют три подкласса ферментов класса гидролаз. Это ферменты, действующие на сложноэфирные связи – эстеразы; действующие на гликозидные соединения – гликозидазы и действующие на пептидные связи – протеазы.

Гликозидазы.

Основной формой запасных углеводов в семенах и клубнях растений является крахмал. Ферментативные превращения крахмала лежат в основе многих пищевых технологий.

а-Амилаза. Эти ферменты обнаружены у животных (в слюне и поджелудочной железе), в растениях (проросшее зерно пшеницы, ржи, ячменя), они вырабатываются плесневыми грибами и бактериями. Все эти ферменты гидролизуют крахмал, гликоген и родственные α -1,4-гликозиды с образованием, главным образом, декстринов и небольшого количества дисахарида – мальтозы.

β-Амилаза Это группа ферментов в основном растительного происхождения. Её источниками являются зерно пшеницы, а также пшеничный и ячменный солод, соевые бобы, клубни картофеля.

β-Амилаза отщепляет мальтозу от конца гликозидной цепи, разрывая гликозидные связи α-1,4 через одну до тех пор, пока не встретится точка ветвления со связью α-1,6.

γ-амилаза продуцируется различными видами плесневых грибов рода Aspergillus. Эти ферменты расщепляют как амилозу, так и амилопектин до глюкозы. Они способны гидролизовать α -1,4 и α -1,6 гликозидные связи. Поэтому данный фермент используется в промышленности для ферментативного получения глюкозы.

Инулаза осуществляет гидродиз инулина и других полифруктозанов. В результате образуется фруктоза (95%) и глюкоза (5%).

Инулаза содержится в тех же растениях (топинамбур, цикорий), в которых присутствует инулин. Существуют инулазы микробного происхождения.

Целлюлолитические ферменты. Ферментативное разрушение целлюлозы и родственных ей полисахаридов (гемицеллюлозы, лигнина) – сложный процесс, требующий участия комплекса ферментов.

Применение целлюлолитических ферментов представляет большой интерес, т. к. может обеспечить получение различных биотехнологических продуктов (глюкозы, этанола, ацетона, микробной биомассы).

Протеолитические ферменты. Основной реакцией, катализируемой протеолитическими ферментами, является гидролиз пептидной связи в молекулах белков и пептидов.

По современной классификации различают эндо- и экзопептидазы. Ферменты первой группы (эндопептидазы) могут гидролизовать глубинные пептидные связи и расщеплять молекулу белка на более мелкие фрагменты; ферменты второй группы (экзопептидазы) не могут гидролизовать пептидные связи, находящиеся в середине цепи, и действуют либо с карбоксильного, либо с аминного конца цепи, отщепляя последовательно одну за другой концевые аминокислоты.

По типу происхождения протеазы подразделют на растительные, животные и микробные.

Протеазы животного происхождения уже давно и широко используются в пищевой промышленности.

Трипсин секретируется поджелудочной железой в виде неактивного предшественника трипсиногена. Высокоочищенный трипсин применяется для медицинских целей, а также в пищевой промышленности для производства гидролизатов.

Пепсин вырабатывается слизистой желудка в виде пепсиногена. Пепсиноген превращается в активный пепсин под действием НС1. Реннин – этот фермент имеет много сходства с пепсином и содержится в соке четвертого отдела желудка телят. Реннин образуется из предшественника – прореннина. Пепсин и ренин являются основными компонентами промышленных препаратов, используемых для свертывания молока

Микробные протеазы – чрезвычайно разнообразны и широко применяются (на их долю приходится около 40% от всех используемых верментов). Наибольшее применение нашли щелочная сериновая протеаза, которая используется в моющих средствах; грибная протеаза из Мусоr, которая заменила телячьи сычуги в производстве сыра, а грибная протеаза из A. oryzae (в комплексе с амилазой), используемая в хлебопечении.

 

Иммобилизованные ферменты

В различных пищевых технологиях долгое время применялись лишь препараты свободных ферментов, срок использования которых – один производственный цикл. Благодаря достижениям молекулярной биологии, биохимии и энзимологии в настоящее время организовано производство ферментов длительного (пролонгированного) действия или иммобилизованных ферментов, т. е. связанных ферментных препаратов.

Сущность иммобилизации ферментов заключается в присоединении их в активной форме тем или иным способом к изолированной фазе (инертной матрице), которая обычно нерастворима в воде и часто представляет собой высокомолекулярный гидрофильный полимер, например, целлюлозу, полиакриламид и т. п.

Иммобилизация часто приводит к изменениям основных параметров ферментативной реакции. Как правило, её скорость снижается.

Иммобилизованные ферменты как катализаторы многоразового действия можно использовать, в основном, для трех практических целей: аналитических, лечебных и препаративных (промышленных).

В случае препаративного применения основную роль играет стоимость, а также возможность автоматизации процесса. Несмотря на большие потенциальные возможности использования им­мобилизованных ферментов в производстве, в настоящее время реали­зованы лишь немногие, например: разделение D- и L-аминокислот; получение сиропов с высоким содержанием фруктозы; возможно использование иммобилизованных ферментов при производстве сыров, стабилизации молока и удалении лактозы из молочных продуктов.


 


Лекция №10

Активность воды

Из мировой практики известно, что существует взаимосвязь (между влагосодержанием пищевых продуктов и их сохранностью (или порчей). Однако часто различные пищевые продукты с одним и тем же содер­жанием влаги портятся по-разному, что можно объяснить различным соотношением «свободной» и «связанной» влаги.

Чтобы учесть эти факторы, был введен термин «активность воды». Этот показатель хорошо корре­лирует со скоростью многих разрушительных реакций.

Активность воды (aw) – это отношение давления паров воды над дан­ным продуктом к давлению паров над чистой водой при той же темпера­туре.

По величине активности воды выделяют: продукты с вы­сокой влажностью (aw= 0,9–1,0) (фрукты, овощи, молоко и жидкие молочные продукты, варёные колбасы); продукты с промежуточной влажностью (aw= 0,6-0,9) (сыры, хлебобулочные изделия, вяленые мясные изделия); продукты с низкой влажностью (aw= 0,0-0,6) (молоко сухое, мука, злаковые и крупяные).

Зависимость между содержанием влаги (масса воды, г Н2О/г СВ) в пищевом продукте и активностью воды в нем при постоянной температуре, называется изотермой сорбции. Очевидно, что в продуктах с высоким содержанием влаги «активность воды» выше, чем в продуктах с низким содержанием влаги.

Установлено, что в продуктах с низкой влажностью при хранении могут происходить окисление жиров, неферментативное потемнение, потеря водорастворимых веществ (витаминов), порча, вызванная ферментами. Роль микроорганизмов здесь минимальна. В продуктах с промежуточной влажностью могут протекать разные процессы, в том числе значительно возрастает роль микроорганизмов порчи. В процессах, протекающих при высокой влажности, микроорганизмам принадлежит решающая роль.

При этом дрожи и плесени менее чувствительны к низкому содержанию влаги. Для них благоприятна среда, если в ней активность воды выше 0,6. Для бактерий и плесеней предельное значение активности воды не должно быть ниже 0,9. В целом процессы порчи значительно замедляются при значениях аw= 0,2–0,4.

Для снижения активности воды используют такие технологические приемы, как сушка, вяление, добавление различных веществ (сахар, соль и др.), замораживание.

 

 

Лекция №11

Тема: Питание и пищеварение

1 Строение и функции пищеварительной системы

2 Основные пищеварительные процессы

3 Схемы процессов переваривания макронутриентов

 

Лекция №12

Теории и концепции питания

Формирование научных представлений о питании и роли пищевых веществ в процессах жизнедеятельности началось лишь в середине XIX в. благодаря ряду научных открытий, непосредственно или опосредованно связан­ных с питанием.

Суть первой научной парадигмы питания сводилась к необходимо­сти обеспечения организма требуемыми питательными веществами. Эта парадигма использована в теории сбалансированного питания, в основе которой лежат три главных положения.

1.При идеальном питании приток веществ точно соответствует их потере.

2.Приток питательных веществ обеспечивается путем разрушения пищевых структур и использования организмом образовавшихся органических и неорганических веществ.

3.Энергетические затраты организма должны быть сбалансированы с поступлением энергии.

Формула сбалансированного питания по А. А. Покровскому представ­ляет собой таблицу, включающую перечень пищевых компонентов с по­требностями в них в соответствии с физиологическими особенностями организма: белки, жиры, углеводы; незаменимые аминокислоты; незаменимые жирные кислоты; витамины; минеральные вещества.

Также человеку необходима вода для воспроизведения потерь в различных биологических процессах.

Балансовый подход к питанию привел к ошибочному заключению, что ценными являются только усваиваемые организмом компоненты пищи, остальные же относятся к балласту.

В 80-е гг. XX в. была сформулирована новая теория питания, представляющая собой развитие теории сбалансированного питания с учетом новейших знаний о функциях балластных веществ и кишечной микрофлоры в физиологии питания.

Эта теория, автором которой явился российский физиолог академик А. М. Уголев, была названа теорией адекватного питания. В основе теории лежат четыре принципиальных положения:

—пища усваивается как поглощающим ее организмом, так и населяющими его бактериями;

—приток нутриентов в организме обеспечивается за счет извлечения их из пищи и в результате деятельности бактерий, синтезирующих дополнительные питательные вещества;

—нормальное питание обусловливается не одним, а несколькими потоками питательных и регуляторных веществ;

—физиологически важными компонентами пищи являются балластные вещества, получившие название «пищевые волокна».

 

Лекция №13

Виды ИПП

Молочные продукты. Выделяют три категории молочных искусственных продуктов.

Потребность в молочных ИПП с изменённым углеводным составом связана с тем, что половина взрослого населения не усваивает молочный сахар лактозу и не может употреблять натуральное молоко.

Потребность в молочных ИПП с изменённым жирнокислотным составом связана с ролью полиненасыщенных жирных кислот в питании, последние повышают биологическую эффективность липидов готового продукта.

ИПП молочные продукты с изменённым белковым составом предназначен в первую очередь для детского питания. Ряд белков молока может быть аллергеном для детей и взрослых. С целью устранения аллергических свойств этих белков предложено денатурировать их путем нагрева или же заменить их белком сои.

Ещё один тип молочных продуктов, не содержащих молочные компоненты, получают на основе белков сои. В настоящее время во многих странах освоено производство искусственных молочных продуктов на базе концентратов и изолятов белка сои: творог тофу, соевое молоко, искусственные сливки, кремы, отбеливатели кофе, десерты, сыры, салатные заправки и др.

Искусственные мясопродукты

Вырабатываются два типа искусственных мясопродуктов, имитирующих:

- традиционные изделия из рубленого мяса (ИРМ);

- нерубленые продукты волокнистой структуры (ИВС).

К типу продуктов ИРМ относятся колбасно-сосисочные изделия, рубленые шницели, котлеты, мясной хлеб, холодные мясные завтраки, мясные пасты, паштеты. Их производят на основе белков сои и пшеницы, яичного альбумина, казеина или их смесей. Для получения ИРМ в раствор или дисперсию белкового или полисахаридного гелеобразователя вводят тонкоизмельченные пищевые вещества, вкусовые и ароматические вещества, красители. Полученную массу помещают в соответствующую оболочку или форму и переводят в студнеобразное состояние.

Для получения ИВС используют белковые волокна, получаемые методом мокрого прядения растворов белков. Волокна затем склеивают пищевым связующим (яичный альбумин, клейковину пшеницы, изолят белков сои, альгинат натрия), содержащим различные пищевые вещества. Получают широкий ассортимент аналогов мяса животных, птицы, рыбы.

 

 

Лекция №14

Гидролиз триацилглицеринов

Под влиянием щелочей, кислот, фермента липазы, а также при действии высоких температуры (220-225ºC) и давления (2,0-2,5МПа) триацилглицерины гидролизуются с образованием ди-, затем моноацилглицеринов и, в конечном счете, жирных кислот и глицерина.

При повышении влажности хранящихся продуктов, температу­ры и активности липазы гидролиз липидов интенсифицируется. Гидролиз ацилглицеринов под действием липазы про­текает ступенчато. При этом гидролиз в первую очередь протекает по сложноэфирным связям 1, 3.

Гидролиз триацилглицеринов широко применяется в технике для по­лучения жирных кислот, глицерина, моно- и диацилглицеринов, а также в процессе получения («варки») мыла.

Переэтерификация

Большое практическое значение имеет группа реакций, протекающих при тем­пературе 80–90°С в присутствии катализаторов, при которых идет обмен ацильных групп (ацильная миграция), приводящий к обра­зованию молекул новых ацилглицеринов. При этом ацильная миграция происходит как внутри молекулы ацилглицерина (внутримолекулярная переэтерификация), так и между различными молекулами ацилглицеринов (межмолекулярная пе­реэтерификация).

Переэтерификация высокоплавких животных и растительных жи­ров с жидкими растительными маслами позволяет получить пищевые пластичные жиры с высоким содержанием линолевой кислоты при от­сутствии трансизомеров жирных кислот. Переэтерифицированные жиры специ­ального назначения применяются в хлебопечении, при производстве аналогов молочного жира, кондитерского жира, комбинированных жиров и т. д.

Присоединение водорода (гидрирование ацилглицеринов)

Гидрирование масел и жиров молекулярным водородом в промышленности проводят при температурах 180–240°С в присутствии катализаторов.

Задача гидрогенизации масел и жиров – целе­направленное изменение жирнокислотного состава исходного жира в результате частичного или полного присоединения водорода к остаткам ненасыщенных жирных кислот в липидах растительного происхождения.

Окисление ацилглицеринов

При свободном доступе воздуха происходит окисление жиров, которое ускоряется с повышением температуры. При хранении (температура от 2 до 25°С) в жирах происходит автоокисление (самоокисление), при обжаривании (температура от 140 до 200°С) – термическое окисление.

Первыми продуктами окис­ления являются разнообразные по строению гидропероксиды (первичные продукты окисления). Преимущественно окисляется группа -СН2-, соседняя с двойной свя­зью (α-положение), а с наибольшей скоростью – расположенная между двумя двойными связями. Образовавшиеся гидропероксиды неустойчи­вы; в результате их сложных превращений образуются вторичные продук­ты окисления: окси- и эпоксисоединения, спирты, альдегиды, кетоны, кислоты и их производные.

Для подавления процесса автоокисления используют антиоксиданты, которые могут связывать активные радикалы. При введении антиоксидантов в количестве 0,01% стойкость жиров к окислению увеличивается в 10–15 раз.

Если жир нагрет до температуры от 140 до 2000 С в воздушной среде, то присоединение кислорода к углеводородным радикалам жирных кислот происходит интенсивно и более беспорядочно, минуя некоторые стадии, имеющие место при автоокислении. При этом не только снижается пищевая ценность липидов, но и возникает реальная угроза здоровью при употреблении липидов с продуктами окисления.

 

Гидролиз крахмала.

1. Гидролиз крахмала возможен под действием кислот. Он используется в промышленности для получения глюкозы. Этот способ имеет ряд существенных недостатков, так как сопровождается образованием продуктов термической деградации и дегидратации углеводов.

2. Крахмал гидролизуется также и под действием амилолитических ферментов при получении зерновых сахарных сиропов из дешевого крахмалсодержащего сырья и крахмала (рожь, кукуруза, сорго и др.). Ферментативный гидролиз крахмала присутствует во многих пище­вых технологиях как один из необходимых процессов в хлебопечении производстве пива, спирта, различных сахаристых крахмалопродуктов.

Ферментативный гидролиз некрахмалистых полисахаридов. Этот гид­ролиз имеет место под действием ферментов целлюлолитического, гемицеллюлазного и пектолитического комплекса. Используется в пище­вой технологии для более полной переработки сырья и улучшения каче­ства продукции.

 

 

Окисление углеводов

Действие окислителей. При определенных условиях возмож­но окисление углеводов в альдоновые кислоты, причем β-форма окисляется быст­рее, чем α-форма. Продуктом окисления является лактон, который находится в равновесии со свободной формой альдоновой кислоты.

Глюконо-β-лактон может присутствовать в пищевых продуктах в уме­ренно кислой среде, когда имеет место медленная реакция, например, при получении некоторых молочных продуктов.

При действии более сильных окислителей (например, азотной кис­лоты) образуются дикарбоновые кислоты.

Окисление, катализируемое ферментами. Здесь прежде всего следует сказать об окислении глюкозы под воздействием глюкозооксидазы.

 

 

Процессы брожения

Брожение – процесс с участием углеводов, используемый в ряде пищевых технологий: в производстве кисломолочных продуктов, пива, кваса, спирта, вина, во время тестоприготовления. Различают несколько видов брожения: спиртовое, молочнокислое, уксуснокислое, пропионовокислое и маслянокислое. Наибольшее практическое значение в пищевой промышленности имеют спиртовое и молочнокислое брожение.

Спиртовое брожение осуществляется благодаря жизнедеятельности ряда микроорганизмов. Наиболее типичными организмами спиртового брожения являются дрожжи рода Saccharomyces. Суммарно спиртовое брожение может быть выражено следующим уравнением:

С6Н12О6 = 2СО2 + 2С2Н5ОН

В реальном процессе спиртового брожения, кроме глав­ных продуктов – этилового спирта и углекислого газа, всегда в незначительном количестве образуются другие спирты, а также карбоновые кислоты, от наличия которых зависит специфический аромат вина, пива и других спиртных напитков.

Другой вид брожения, важный для пищевых технологий, это молочнокислое брожение, при котором из одной молекулы гексозы образуются две молекулы молочной кислоты:

Молочнокислое брожение играет очень большую роль при производстве молочнокислых продуктов (простокваши, ацидофилина, кефира, ку­мыса, творога, кисломолочных сыров), при изготовлении кваса, хлебных заквасок и «жидких дрожжей» для хлебопечения, при квашении капусты, огурцов, при силосовании кормов.

Все микроорганизмы, вызывающие молочнокислое брожение, раз­деляются на две группы.

К первой группе принадлежат микроорганизмы, подобные Lactococcus lactis, сбраживающие гексозы в точном соответствии с вышеприведенным суммарным уравнени­ем молочнокислого брожения. Их называют гомоферментативными молочнокислыми бактериями.

Вторую группу образуют гетероферментативные молочно­кислые бактерии, которые, кроме молочной кислоты, образуют значитель­ные количества других продуктов, в частности, уксусной кислоты и этило­вого спирта.

 

 

Раздел 5

Лекция №15

Токсичные элементы

Токсичные элементы (в частности, некоторые тяжелые металлы) со­ставляют обширную и весьма опасную в токсикологическом отношении группу веществ: Hg, Pb, Cd, As, Sb, Sn, Zn, Al, Be, Fe, Cu, Ba, Cr, Tl. Наибольшую опасность из вышеназванных элементов представляют ртуть (Hg), свинец (РЬ), кадмий (Cd). При этом малые концентрации некоторых элементов жизненно необходимы для нормаль­ной жизнедеятельности человека и животных.

Загрязнение водоемов, атмосферы, почвы, сельскохозяйственных ра­стений и пищевых продуктов токсичными металлами происходит за счет:

выбросов промышленных предприятий, городского транспорта, контакта сырья, полуфабрикатов и готовых продуктов с оборудованием, применения в консервном производстве некачественных внутренних покрытий и при нарушении технологии припоев.

Радиоактивное загрязнение

Радионуклиды естественного происхож­дения постоянно присутствуют во всех объектах неживой и живой при­роды. Однако природные радионуклиды не представляют существенной угрозы для здоровья человека.

С момента овладения человеком ядерной энергией в биосферу нача­ли поступать искусственные радионуклиды, образующиеся на АЭС, при производстве ядерного топлива и испытаниях ядерного оружия: 14С, l37Cs, 90Sr, 89Sr, 106Ru, 144Ce, 131I, 95Zr.

Существуют три пути попадания радиоактивных веществ в организм человека: а) при вдыхании воздуха, загрязненного радиоактивными ве­ществами; б) через желудочно-кишечный тракт – с пищей и водой; в) через кожу.

Ионизирующие излучения действуют на организм в целом, но прежде всего на биомолекулы и субкле­точные образования. Наиболее чувствительными к облучению органеллами клеток орга­низма млекопитающих являются ядро и митохондрии. В результате радиоактивного воздействия происхо­дят количественные и качественные изменения в ДНК, нарушаются про­цессы транскрипции и трансляции. Кроме этого, угнетаются энергети­ческие процессы, нарушаются фун­кции мембран.

Лекция №16

Бактериальные токсины

Природные токсины представля­ют огромный риск для здоровья населения планеты, так как они широко распространены и оказывают очень высокую нагрузку на организм человека, сопоставимую с антропогенными ксенобиотиками. Наибольшую опасность представляют бак­териальные токсины. Бактериальные токсины загрязняют пищевые продукты и являются причиной острых пищевых интоксикаций.

Staphylococcus aureus – грамположительные бактерии, являются при­чиной стафилококкового пищевого отравления (27 – 45% всех пищевых токсикоинфекций). Наиболее благоприятной средой для роста и развития стафилокок­ков являются молоко, мясо и продукты их переработки, а также конди­терские кремовые изделия. Энтеротоксины S. aureus термостабильны и инактивируются лишь после 2 – 3 часового кипячения.

Бактерицидным действием по отношению к стафилококкам обладают уксусная, лимонная, фосфорная, молочная кислоты при рН до 4,5. Жизнедеятельность S. aureus прекращается при концен­трации соли (NaCl) – 12%, сахара – 60-70%, вакуумная упаковка также ингибирует рост бактерий. Все это необходимо учитывать в различных технологиях консервирования, как в промышленном масштабе, так и в домашних условиях.

Clostridium botulinum продуцирует высокоопасные токсины. Палочка ботулизма может развиваться и накапливать токсины в рыбных, мясных продуктах, фруктовых, овощных и грибных консервах при недостаточной тепловой обработке и в условиях резкого снижения содержания кислорода (герметично закупоренные консервы). Кроме того, ботулотоксины характеризуются высокой кислот, но инактивируются под влиянием щелочей и высоких темпера­тур (80°С – 30 мин; 100°С – 15 мин).

Патогенные штаммы Escherichia coli являются продуцентами термостабильных токсинов, способных вызывать как острые токсиноинфекции, так и являться причиной хронической интоксикации.

Сырое мясо и мясные продукты, молоко, а также вода могут быть при­чиной возникновения заболеваний, связанных с присутствием патоген­ных штаммов Е. coli.

 

Микотоксины

Микотоксины (от греч. mukes – гриб и toxicon – яд) – это метаболиты микроскопических плесневых грибов. С гигиенических позиций – это особо опасные токсические веще­ства, загрязняющие корма и пищевые продукты. Высокая опасность ми­котоксинов выражается в том, что они обладают токсическим эффектом в чрезвычайно малых количествах и способны весьма интенсивно диф­фундировать вглубь продукта (заплесневевший хлеб).

Наибольшую опасность представляют следующие виды микотоксинов.

Афлатоксины продуцируются некоторыми штаммы микроскопических грибов Aspergillus flavus (Link.) и Aspergillus parasiticus (Speare).

Афлатоксины или их активные метаболиты действуют практически на все компоненты клет­ки, что приводит к так называемому метаболистическому хаосу и гибели клетки. В первую очередь происходит поражение печени.

В природных условиях чаще и в наибольших количествах афлатоксины обнаруживаются в арахисе, кукурузе, семенах хлопчатника. Кро­ме того, в значительных количествах они могут накапливаться в раз­личных орехах, семенах масличных культур, пшенице, ячмене, зернах какао и кофе.

Охратоксины – это соединения высокой токсичности, с ярко выраженным тератогенным эффектом.

Продуцентами охратоксинов являются микроскопические грибы рода Aspergillus и Penicillium.

Охратоксины входят в группу микотоксинов, преимущественно поражающих почки. При остром токси­козе, вызванном охратоксинами, патологические изменения выявляют­ся в печени и в желудочно-кишечном тракте.

Основными расти­тельными субстратами, в которых обнаруживаются охратоксины, явля­ются зерновые культуры и среди них, в первую очередь, кукуруза, пше­ница, ячмень.

Трихотеценовые микотоксины являются метаболитами различ­ных представителей микроскопических грибов рода Fusarium, которые вызывают гниение корней, стеб­лей, листьев, семян, плодов, клубней и сеянцев сельскохозяйственных растений.

Алиментарные токсико­зы, вызванные потреблением в пищу пищевых продуктов и кормов, по­раженных микроскопическими грибами, продуцирующими ТТМТ, мож­но отнести к наиболее распространенным микотоксикозам человека и сельскохозяйственных животных. Хорошо известен токсикоз «пьяного хлеба» – заболевание человека и животных, причиной которого является употребление зерновых про­дуктов (главным образом хлеба), приготовленных из зерна, пораженно­го грибами Fusarium graminearum (F. roseum).

ТТМТ являются ингибиторами синтеза белков и нуклеиновых кислот, то есть они вызывают гибель клетки.

Зеараленон и его производные также продуцируются микроскопическими грибами рода Fusarium.

Зеараленон обладает выраженными гормоноподобными (экстрогенными) свойствами. Кроме этого было доказано тератогенное действие зеараленона.

Наиболее часто зеараленон обнаруживается в кукурузе, комбикормах, а также в пшенице, овсе и ячмене.

Патулин продуцируется микроскопическими грибами Penicillium patulum и Penicillium expansu, которые поражают в основном фрукты и некоторые овощи, вызывая их гниение. Этот микотоксин распространен по­всеместно и представляет реальную опасность для здоровья человека.

Патулин обнаружен в яблоках, грушах, абрикосах, персиках, вишне, винограде, бананах, клубнике, голубике, бруснике, об­лепихе, айве, томатах. Патулин в высоких концентрациях обнаруживается и в продуктах пе­реработки фруктов и овощей: соках, компотах, пюре и джемах. Особен­но часто его находят в яблочном соке.

Предполагается, что патулин блокирует синтез ДНК, РНК и белков и в конечном итоге приводит к гибели клетки.

 

Все микотоксины, как правило, являются термоустойчивыми соединениями, что ещё больше увеличивает их опасность.

 

 

Лекция №17

Лекция №19

Определения. Классификация

Пищевые добавки – природные, идентичные природным или ис­кусственные (синтетические) вещества, сами по себе не употребляе­мые как пищевой продукт или обычный компонент пищи. Они пред­намеренно добавляются в пищевые системы по технологическим со­ображениям на различных этапах производства, хранения, транспор­тировки готовых продуктов с целью улучшения или облегчения произ­водственного процесса или отдельных его операций, увеличения стой­кости продукта к различным видам порчи, сохранения структуры и внешнего вида продукта или намеренного изменения органолептических свойств.

К пищевым добавкам не относят соединения, повышающие пище­вую ценность продуктов питания и причисляемые к группе биологичес­ки активных веществ, такие как витамины, микроэлементы, аминокис­лоты и др.

Существует различие между пищевыми добавками и вспомогатель­ными материалами, употребляемыми в ходе технологического процесса. Вспомогательные материалы – любые вещества или материалы, кото­рые, не являясь пищевыми ингредиентами, преднамеренно используют­ся при переработке сырья и получении продукции с целью улучшения технологии; в готовых пищевых продуктах вспомогательные материалы должны полностью отсутствовать (оксид кальция, диоксид серы и углерода в производстве сахара).

Пищевые добавки употребляются человеком в течение многих веков (соль, перец, гвоздика, мускатный орех, корица, мед), однако широкое их использование началось в конце XIX в.

Число пищевых добавок, применяемых в производстве пищевых про­дуктов в разных странах, достигает сегодня 500 наименований. Для гармонизации их использования разработана рациональная система цифровой кодифи­кации пищевых добавок с литерой «Е». Каждой пищевой добавке присвоен цифро­вой трех- или четырехзначный номер.

В нашей Республике допустимо использование не всех пищевых добавок.

Применение разрешённых пищевых добавок допустимо только в том случае, если они даже при длительном потреблении в составе продукта не угрожают здоровью человека, и при условии, если поставленные технологические задачи не могут быть решены иным путем.

Пищевые добавки должны вноситься в пищевые продукты в минимально необходимом для достижения технологического эффекта количестве, но не более установленных Санитарными правилами пре­делов.

 

Лекция №20

Пищевые красители

Основной группой веществ, определяющих внешний вид продуктов пи­тания, являются пищевые красители (Е100-Е182).

Потребитель давно привык к определенному цвету пищевых продук­тов, связывая с ним их качество, поэтому красители в пищевой промыш­ленности применяются с давних времен. В условиях современных пище­вых технологий, включающих различные виды термической обработки (кипячение, стерилизацию, жарение и т. д.), а также при хранении про­дукты питания часто изменяют свою первоначальную, привычную для по­требителя окраску, а иногда приобретают неэстетичный внешний вид, что делает их менее привлекательными.

Для окраски пищевых продуктов используют натуральные (природ­ные) или синтетические (органические и неорганические) красители.

Натуральные красители являются более безопасными их обычно выделяют из природных источни­ков (растения, отходы их переработки) в виде смеси различных по своей химической природе соедине­ний, состав которой зависит от источника и технологии получения, в связи с чем обеспечить его постоянство часто бывает трудно. Среди натуральных красителей необходимо отметить каротиноиды (красно-жёлтый цвет), антоцианы (красный, пурпурно-красный цвет), флавоноиды (жёлтый, красный цвет), хлорофиллы (зелёный цвет).

При­родные красители, в том числе и модифицированные, чувствительны к действию кислорода воздуха (например, каротиноиды), кислот и ще­лочей (например, антоцианы), температуры, могут подвергаться мик­робиологической порче.

Синтетические красители обладают значительными технологически­ми преимуществами по сравнению с большинством натуральных краси­телей. Они дают яркие, легко воспроизводимые цвета и менее чувстви­тельны к различным видам воздействия, которым подвергается матери­ал в ходе технологического потока.

Синтетические пищевые красители – это представители нескольких классов органических соединений: азокрасители; хинолиновые; индигоидные красители.

В пищевой промышленности применяются соединения, изменяющие окраску продукта в результате взаимодействия с компонентами сырья и готовых продуктов. Среди них отбеливающие вещества (диоксид серы) или вещества, стабилизирующие окраску (нитрат натрия, нитриты натрия и калия стабилизируют красный цвет мяса и мясных продуктов). Иногда эти цветокорректирующие материалы оказывают и другое, сопутствую­щее (например, консервирующее) действие. Наиболее часто используемые цветокорректирующие материалы – диок­сид серы, нитрат и нитрит калия и натрия.

 

Подслащивающие вещества

В пищевой промышленности, кулинарии, при приготовлении пищи в домашних условиях с давних времен широко применяются вещества, обладающие сладким вкусом, – подслащивающие вещества (подсластители). Существуют различные их классификации: по калорийности (высококалорийные, низ­кокалорийные, практически некалорийные), степени сладости (подсла­стители с высоким или низким сахарным эквивалентом), по химиче­скому составу и т. д.

Мед – продукт переработки цветочного нектара медоносных цветов пчелами; Он в основном состоит из моно- и дисахаридов (в том числе около 40% фруктозы, 35% глюкозы и 2% сахарозы) и на 5,5% – из крахмала. Мёд богат витаминами С, В6 и В9, железом, йодом и фтором.

Сахаристые крахмалопродукты

В пищевой промышленности возрастает производство и потребление разнообразных сахаристых крахмалопродуктов, получаемых путем гид­ролиза крахмала: крахмальные патоки, глюкоза, фруктоза или их сиропы.

К группе подслащивающих веществ относятся солодовый экстракт (водная вытяжка из ячменного солода), лактоза (молочный сахар, дисахарид, состоящий из остатков глю­козы и галактозы).

В последнее время с учетом требований науки о питании получило интенсивное развитие производство низкокалорийных продуктов, содержащие вместо сахарозы подсластители (миракулин, монелин, тауматин, стевиозид) и сахарозаменители (ксилит, сорбит, лактит, сахарин, ацесульфам калия, аспартам). Не имея глюкозного фрагмента, заменители сахарозы могут ус­пешно использоваться при производстве продуктов питания и замени­телей сахара для больных сахарным диабетом. Высокий коэффициент сладости (Ксл=50÷3000) позволяет, применяя их, производить низкокалорийные, дешевые диетические продукты.

Ароматизаторы

Аромат пищевого продукта – интегральный фактор, обусловленный присутствием в нем сложной смеси органических соединений.

Пищевые ароматизаторы – это пищевые добавки, представляющие собой смеси ароматических (душистых) веществ или индивидуальные ароматические (душистые) вещества, с растворителем или сухим носи­телем, или без них, и вводимые в продукты с целью улучшения их арома­та и вкуса.

Основными потре­бителями ароматизаторов являются производства безалкогольных напит­ков, мороженого, ликероводочных изделий, жевательной резинки, широ­кого ассортимента кондитерских изделий; ароматизаторы добавляют в су­хие кисели, маргарины, сиропы, мучные кондитерские изделия, молочные продукты, пудинги и мясопродукты и т. д.

Натуральными пищевыми ароматизаторами являются эфирные масла и настои, пряности и продук­ты их переработки (химический и микробиологический синтез).

Пищевые ароматизаторы идентичные натуральным – по своему строению они отвечают природным соединениям, а их композиции позволяют получить комбинации веществ, отличающиеся стабильностью, заданным ароматом. Они удобны в использовании.

Искусственные пищевые ароматизаторы (включающие компоненты, не имеющие природных аналогов) требуют специального изучения и гигиенической оцен­ки, они отличаются высокой стабильностью, интенсивностью аромата, дешевизной.

Существуют пищевые добавки, усиливающие вкус и аромат пищевых продуктов. К ним относится производ­ные глутаминовой, гуаниловой, инозиновой кислот, рибонуклеотиды и производные мальтола.

 

 

Пробиотики и пребиотики.

Пробиотики, представляют собой живые микроорганизмы или культивированные ими продукты, которые благотворно воздействуют на микрофлору желудочно-кишечного факта (ЖКТ).

К бактериям-пробиотикам относятся, в основном, их классические представители, входящие в состав нормальной микрофлоры ЖКТ: бифидобактерии и молочнокислые микроорганизмы рода Lactobacillus. Ряд других микроорганизмов с пробиотическими свойствами не встречаются постоянно в кишечнике человека и называются транзиторными. Это молочно-кислые палочки и кокки.

Для человека наиболее естественным и доступным путем получения пробиотиков является потребление натуральных, в частности, кисло-молочных продуктов, полученных биотехнологическим способом с использованием различных микроорганизмов.

Пребиотики являются стимуляторами, или промоторами, пробиотиков. В группу пребиотиков входят вещества или диетические добавки, которые не абсорбируются в кишечнике человека, вместе с тем, селективно стимулируют рост или активизируют метаболизм полезных представителей микрофлоры ЖКТ, оказывая благотворное влияние на организм: неперевариваемые олигосахариды и полисахариды, отдельные витамины и их производные, а также биологически активные иммунные белки – лактоглобулины и гликопептиды.

 

Лекция №1

Тема: Пищевая химия, как дисциплина. Основные направления пищевой химии.

1 Предмет, содержание и основные направления дисциплины.

2 Понятие качества пищевых продуктов. Общие пищевые законоположения и инструкции.

3 Проблемы повышения качества пищевых продуктов.

 

1 Предмет, содержание и основные направления дисциплины.

Среди основных проблем, стоящих перед обществом в наше время, является обеспечение населения земного шара продуктами питания, так как от состава и качества продуктов питания, зависит обеспеченность нашего организма пластическим материалом и энергией, работоспособность, здоровье, способность человека к воспроизводству. Одной из важнейших причин ухудшения показателей здоровья населения во всём Мире на сегодняшний день является неудовлетворительное, неполноценное питание, что определяется рядом факторов:

—избыточное потребление животных жиров;

—дефицит полиненасыщенных жирных кислот;

—дефицит полноценных (животных) белков;

—дефицит витаминов (аскорбиновой кислоты, рибофлавина (В2), тиамина (В1), фолиевой кислоты, ретинола (А) и (β-каротина, токоферола и других);

—дефицит минеральных веществ (кальция, железа);

—дефицит микроэлементов (селена, цинка, йода, фтора);

—дефицит пищевых волокон.

Таким образом, организация здорового питания населения – сложный и многофакторный процесс, зависящий от экологической обстановки, обеспеченности населения, достижений медицины, фундаментальных наук (физика, химия, микробиология), новых технологических возможностей, которые появились у производителей продуктов питания. Все это требует коренного совершенствования технологии получения традиционных продуктов, создания нового поколения пищевых продуктов. Эти направления в значительной степени охватываются областью науки – пищевая химия.

Пищевая химия – один из разделов химической науки, её основной предмет – это область питания человека. Пищевая химия занимается вопросами химического состава пищевых продуктов, преобразований нутриентов в технологическом потоке и в нашем организме, разработкой новых методов анализа и системы управления качеством.

 

Понятие качества пищевых продуктов. Общие пищевые законоположения и инструкции

Продукты питания должны удовлетворять потребности человека в пищевых веществах и энергии, а также выполнять профилактические и лечебные функции. На решение этих задач направлена концепция государственной политики в области здорового питания населения нашей республики. Работа в данной области предусматривает использование специальной терминологии, установленной экспертами Международной организации по стандартизации – ISO (ИСО).

Основные термины и определения:

Качество продукции – это совокупность свойств и характеристик продукции, которые придают продукции способность удовлетворять обусловленные или предполагаемые потребности, то есть высокие органолептические показатели, удовлетворение потребности организма в основных пищевых веществах (нутриентах) и обеспечение безопасности для здоровья человека.

Безопасность пищевых продуктов – состояние обоснованной уверенности в том, что пищевой продукт в обычных условиях его использования не является вредным и не представляет опасности для здоровья нынешнего и будущих поколений.

Политика в области качества – общие намерения и направление деятельности в области организации, официально сформулированные высшим руководством.

Под государственной политикой в области здорового питания понимается комплекс мероприятий, направленных на создание условий, обеспечивающих удовлетворение потребностей населения в рациональном здоровом питании с учетом его традиций, привычек, экономического положения, в соответствии с требованиями медицинской науки.

Основной задачей государственной политики в области здорового питания является создание соответствующей экономической, правовой и материальной базы.

В республике Беларусь действуют законы, регулирующие вопросы качества и безопасности как продукции и товаров в целом, так и пищевых продуктов в частности. Это законы: «О защите прав потребителя», «О техническом нормировании и стандартизации», «О качестве и безопасности продовольственного сырья и пищевых продуктов для жизни и здоровья человека», «О здравоохранении», «О радиационной безопасности», и др.

 

 

Дата: 2019-02-19, просмотров: 254.