Проблемы технического перевода
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Пояснительная записка

Данное пособие предназначено для студентов специальности 15.02.08 «Технология машиностроения» и соответствует требованиям к знаниям и умениям по дисциплине «Английский язык»

Пособие состоит из 8 уроков. Каждый урок посвящен определенной области  производства, которая раскрываются с помощью профессионально-направленных текстов. Пособие включает в себя введение, касающееся проблем технического перевода, текстовый материал, комплекс лексико-грамматических упражнений.

Основная задача пособия – подготовить студентов к самостоятельному чтению аутентичных текстов в соответствии с профессиональными целями деятельности. Студенты должны научиться переходить от просмотрового чтения к ознакомительному или к чтению с детальным извлечением информации (изучающему чтению) и наоборот.

Тексты призваны сформировать у сегодняшнего студента понятие о технологии машиностроения и современных требованиях, предъявляемых к человеку, который в будущем, став специалистом, будет развивать российскую  промышленность.

Для овладения всеми видами речевой деятельности студентам предлагается ряд заданий, разнообразные манипуляции со словами, словосочетаниями и предложениями с учетом особенностей текста, а также упражнения, формирующие навыки и умения дифференциации, трансформации и конструирования языковых единиц. При этом решаются конкретные учебные задачи (пересказ текста, извлечение необходимой информации, письменное сообщение). Задания направлены на обучение различным приёмам оперирования с текстом на всех этапах работы, что позволяет студентам развивать общие и профессиональные компетенции.

 

 

Содержание

 

1. Введение. Проблемы технического перевода 6
2. UNIT 1. Machine Building Text A. Trends in the  Modern  Machine-building  Industry Text B. Reliability Text C. Industrial  Engineering and Automation Text D. Five Basic  Techniques 10  
3. UNIT 2. Metals Text A: Metals Text B: Steel Text C: Methods of Steel Heat Treatment 16
4. UNIT 3. Metalworking Text A: Metalworking Processes: Rolling, Extrusion. Text B: Drawing, Forging, Sheet Metal Forming. Text C: Metalworking and Metal Properties.   22
5. UNIT 4. Materials Science and Technology. Text A: Materials Science and Technology. Text B: Mechanical Properties of Materials. 31
6. UNIT5. Materials Technology. Text A. Changes in Materials Technology. Text В. Working With New Materials. Text C. Metal Casting - a Basic Manufacturing Process. Text D. Metal Cutting. Text E. Factors affecting machinability. 38  
7. UNIT 6. Machine-Tools. Text A: Machine-tools. Text B: Lathe. Text C: Milling, boring, drilling machines. Shapers and Planers. Text D: Dies. 45
8. UNIT7. Automation and  Robotics Text A: Automation Text B: Types of Automation Text C: Robots in Manufacturing 53
9. UNIT 8. Famous People of  Science and Engineering TEXT A. James Watt TEXT B. Alfred Bernard Nobel TEXT C. Babbage, Charles TEXT D. James Prescott Joule 58

 

 

Введение .

Проблемы технического перевода

Цель всякого перевода с иностранного языка на родной – познакомить читателя с каким-либо текстом или содержанием устного текста. Перевод должен в полной мере соответствовать нормам того языка, на котором он сделан.

Для правильного понимания исходного английского текста необходимо научиться анализировать предложение, и этот анализ нужно начинать с нахождения главных членов предложения – подлежащего и сказуемого – и установления связей между всеми остальными членами предложения.

От правильного понимания излагаемых в зарубежных стать­ях и книгах фактов во многом зависит развитие нашей науки и техники. Языку научной и технической литературы присущ формально-логический стиль, требующий при переводе строго логического анализа.

Твердый порядок слов

Для перевода очень важно выяснить, каким членом предложения является данное слово. Этому в значительной мере помогает так называемый твердый порядок слов предложения.

В отличие от русского языка в английском языке подлежащее, сказуемое, дополнение обычно стоят в строгой последовательности одно за другим, как бы являются «костяком» предложения (ПСД).

Passive Voice

Формула: to be + III форма смыслового глагола + by (with).

Здесь То be — вспомогательный глагол, несущий грамматическую на­грузку, т. е. выражающий время, число, лицо всей глагольной формы.

Само название Passive — «пассив» указывает на то, что подлежащее пассивно. Деятель или орудие действия (если они имеются) выражены дополнением, перед которым стоят пред­логи by или with (соответствующие в русском языке твори­тельному падежу «кем, чем?»).

This book was read (by many students). Эту книгу читали (многие студенты). The letter is written with a pen. Письмо пи­шут пером.

Во избежание ошибок или неточностей рекомендуется пе­реводить пассивную конструкцию неопределенно-личной или личной формой глагола в действительном залоге, помня о том, что подлежащее пассивно. Например:

The picture was looked at. На картину смотрели, а не: Кар­тина смотрела.

Термины

Термины это отдельные слова и словосочетания, имеющие специальное значение в какой-либо области науки и техники и обозначающие названия предметов, понятий или процессов, описывающих эту область. В качестве терминов могут употребляться обычные слова, которые получают в научно-техническом тексте строго однозначное значение, соотносимое с определённым понятием, которое выявляется в контексте.

Solids, liquids, gases – твёрдые вещества, жидкости, газы

Surface tension – поверхностное натяжение

Steam engine – паровой двигатель

Конечно, одни и те же слова могут приобретать разные терминологические значения в разных областях науки и техники. Для правильного перевода термина нужно понимать, о чём идёт речь в данном контексте. Кроме того, нужно уметь пользоваться специальными двуязычными словарями в которых даются соответствия терминов принятых в обоих языках.

Словообразование

Пониманию английского текста и его переводу серьезно помогает знание словообразовательных средств языка. Основных и наиболее продуктивных способов расширения словарного состава английского языка два: словопроизводство (образование новых слов при помощи суффиксов и префиксов) и словосложение (соединение двух и более слов в одно).

Другие способы словообразования – это конверсия, чередование ударений и чередование звуков.

 

 

UNIT 1

MACHINE BUILDING

Text B. RELIABILITY

Text B. RELIABILITY

       Reliability is a basic requirement, plant or machine. The most ingenious machine is nothing but useless unless it is reliable.

At present the main defect in any machine is the different service life of its parts. The first to break down are parts with friction, the most numerous in any machine. Until quite recently scientists differed in there explanations of why parts subjected to friction break.

At present scientists are engaged in research into friction and were-and-tear resistance. The results of their comprehensive research will extend the useful life of units with friction by thirty to fifty percent as compared with what we have now.

Sufficient reliability and long service life of highly complicated automatic complexes, spaceships and assembly lines can be ensured by the high quality of their components, their accurate assembly and continuous checking while in operation, as well as by detecting faults as soon as they appear. This means that instruments are necessary for checking metal billets; all kinds of test installations and multiple switching control devices by which temperature, pressure and density in any part of a system may be inspected a number of times over a period of only one second. We need diagnostic system and many different types of flaw detectors and sensors because, as is known, reliability is the key which opens the way to large-scale automation.

Exercise 1.4 Answer the questions:

1. Why is the service life of different machine parts different?

2. What factors do the service life and reliability of complicated systems depend on?

3. In what ways can the quality of machine parts be inspected?

 

UNIT 2

METALS

Text A: METALS

Text B: STEEL

Text A: METALS

Metals are materials most widely used in industry be­cause of their properties. The study of the production and properties of metals is known as metallurgy.

The separation between the atoms in metals is small, so most metals are dense. The atoms are arranged regu­larly and can slide over each other. That is why metals are malleable (can be deformed and bent without frac­ture) and ductile (can be drawn into wire). Metals vary greatly in their properties. For example, lead is soft and can be bent by hand, while iron can only be worked by hammering at red heat.

The regular arrangement of atoms in metals gives them a crystalline structure. Irregular crystals are called grains. The properties of the metals depend on the size, shape, orientation, and composition of these grains. In general, a metal with small grains will be harder and stronger than one with coarse grains.

Heat treatment such as quenching, tempering, or annealing controls the nature of the grains and their size in the metal. Small amounts of other metals (less than 1 per cent) are often added to a pure metal. This is called alloying (легирование) and it changes the grain struc­ture and properties of metals.

All metals can be formed by drawing, rolling, ham­mering and extrusion, but some require hot-working. Metals are subject to metal fatigue and to creep (the slow increase in length under stress) causing deformation and failure. Both effects are taken into account by engineers when designing, for example, airplanes, gas-turbines, and pressure vessels for high-temperature chemical proc­esses. Metals can be worked using machine-tools such as lathe, milling machine, shaper and grinder.

The ways of working a metal depend on its properties. Many metals can be melted and cast in moulds, but spe­cial conditions are required for metals that react with air.

Vocabulary:


property — свойство

metallurgy — металлургия

separation — разделение, отстояние

dense — плотный

arrangement — расположение

regularly — регулярно, правильно

to slide — скользить

malleable — ковкий, податливый, способ­ный деформироваться

bent pp of bend — гнуть

to fracture — ломать

ductile — эластичный, ковкий

to draw — волочить, тянуть

wire — проволока

lead — свинец

iron — железо, чугун

grain — зерно

to depend — зависеть

size — размер, величина

shape — форма, формировать

composition — состав

coarse — грубый, крупный

treatment — обработка

quenching — закалка

tempering — отпуск после закалки, нор­мализация

annealing — отжиг, отпуск

rolling — прокатка

to hammer — ковать (напр. молотом)

extrusion — экструзия

metal fatigue — усталость металла

creep — ползучесть

stress — давление,

failure — повреждение, разрушение

vessel — сосуд, котел, судно

lathe — токарный станок

milling machine — фрезерный станок

shaper — строгальный станок

grinder — шлифовальный станок

to melt — плавить, плавиться расплавить

to cast — отливать, отлить

mould — форма (для отливки)


General understanding:


1. What are metals and what do we call metallurgy?

2. Why are most metals dense?

3. Why are metals malleable?

4. What is malleability?

5. What are grains?

6. What is alloying?

7. What is crystalline structure?

8. What do the properties of metals depend on?

9. What changes the size of grains in metals?

10. What are the main processes of metal forming?

11. How are metals worked?

12. What is creeping?


Exercise 2.1. Find the following words and word combinations in the text:


1. Свойства металлов

2. расстояние между атомами

3. правильное расположение

4. сильно отличаются по своим свойствам

5. кристаллическая структура

6. размер зерен

7. форма зерен

8. закалка

9. отжиг

10.волочение

11.прокатка

12.ковка

13.экструзия

14. структура и свойства зерна

15. горячая обработка

16. усталость металла

17. ползучесть металла

18. плавка и отливка в формы

19. способы обработки металла


Exercise 2.2. Complete the following sentences:


1. Metals are...

2. Metallurgy is...

3. Most metals are...

4. The regular arrangement of atoms in metals...

5. Irregular crystals...

6. The properties of the metals depend...

7. Metals with small grains will be...

8. ...controls the nature of the grains in the metal.

9. Alloying is...

10. All metals can be formed by...

11. Creep is...

12. Metals can be worked using...

Exercise 2.3. Translate into English:

1. Металлы — плотные материалы потому, что между атомами в металлах малое расстояние.

2. Металлы имеют кристаллическую структуру из-за правильного расположения атомов.

3. Чем меньше зерна, тем тверже металл.

4. Закалка и отжиг изменяют форму и размер зе­рен в металлах.

5. Легирование изменяет структуру зерен и свой­ства металлов.

6. Металл деформируется и разрушается из-за ус­талости и ползучести.

 








Text В: STEEL

The most important metal in industry is iron and its alloy — steel. Steel is an alloy of iron and carbon. It is strong and stiff, but corrodes easily through rusting, although stainless and other special steels resist corro­sion. The amount of carbon in a steel influences its prop­erties considerably. Steels of low carbon content (mild steels) are quite ductile and are used in the manufacture of sheet iron, wire, and pipes. Medium-carbon steels con­taining from 0.2 to 0.4 per cent carbon are tougher and stronger and are used as structural steels. Both mild and medium-carbon steels are suitable for forging and weld­ing. High-carbon steels contain from 0.4 to 1.5 per cent carbon, are hard and brittle and are used in cutting tools, surgical instruments, razor blades and springs. Tool steel, also called silver steel, contains about 1 per cent carbon and is strengthened and toughened by quenching and tempering.

The inclusion of other elements affects the properties of the steel. Manganese gives extra strength and tough­ness. Steel containing 4 per cent silicon is used for trans­former cores or electromagnets because it has large grains acting like small magnets. The addition of chro­mium gives extra strength and corrosion resistance, so we can get rust-proof steels. Heating in the presence of carbon or nitrogen-rich materials is used to form a hard surface on steel (case-hardening). High-speed steels, which are extremely important in machine-tools, contain chromium and tungsten plus smaller amounts of vana­dium, molybdenum and other metals.

 

Vocabulary:


alloy — сплав

carbon— углерод

stiff — жесткий

to corrode — разъедать, ржаветь

rusty — ржавый

stainless — нержавеющий

to resist — сопротивляться

considerably — значительно, гораздо

tough — крепкий, жесткий, прочный, вынос­ливый

forging — ковка

welding — сварка

brittle — хрупкий, ломкий

cutting tools — режущие инструменты

surgical instruments — хирургические ин­струменты

blade — лезвие

spring — пружина

inclusion — включение

to affect — влиять

manganese — марганец

silicon — кремний

rust-proof — нержавеющий

nitrogen — азот

tungsten — вольфрам


General understanding:

1. What is steel?

2. What are the main properties of steel?

3. What are the drawbacks of steel?

4. What kinds of steel do you know? Where are they used?

5. What gives the addition of manganese, silicon and chromium to steel?

6. What can be made of mild steels (medium-carbon steels, high-carbon steels)?

7. What kind of steels can be forged and welded?

8. How can we get rust-proof (stainless) steel?

9. What is used to form a hard surface on steel?

10. What are high-speed steels alloyed with?

 

Exercise 2.4. Find the following words and word combinations in the text:

1. сплав железа и углерода

2. прочный и жесткий

3. легко коррозирует

4. нержавеющая сталь

5. низкое содержание углерода

6. ковкость

7. листовое железо, проволока, трубы

8. конструкционные стали

9. пригодны для ковки и сварки

10. твердый и хрупкий

11. режущие инструменты

12. хирургические инструменты

13. инструментальная сталь

14.упрочнять

15. добавление марганца (кремния, хрома, вольфра­ма, молибдена, ванадия)



UNIT 3

METALWORKING

Text A: METALWORKING PROCESSES: ROLLING, EXTRUSION.

Text B: DRAWING, FORGING, SHEET METAL FORMING.

Text C: METALWORKING AND METAL PROPRTIES.

Rolling,

Extrusion,

Drawing,

Forging,

Sheet-metal forming.

During the first four processes metal is subjected to large amounts of strain (deformation). But if deformation goes at a high temperature, the metal will recrystallize — that is, new strain-free grains will grow instead of deformed grains. For this reason metals are usually rolled, ex­truded, drawn, or forged above their recrystallization temperature. This is called hot working. Under these conditions there is no limit to the compressive plastic strain to which the metal can be subjected.

Other processes are performed below the recrystalli­zation temperature. These are called cold working. Cold working hardens metal and makes the part stronger. However, there is a limit to the strain before a cold part cracks.

Rolling

Rolling is the most common metalworking process. More than 90 percent of the aluminum, steel and copper produced is rolled at least once in the course of produc­tion. The most common rolled product is sheet. Rolling can be done either hot or cold. If the rolling is finished cold, the surface will be smoother and the product stronger.

Extrusion

Extrusion is pushing the billet to flow through the orifice of a die. Products may have either a simple or a complex cross section. Aluminum window frames are the examples of complex extrusions.

Tubes or other hollow parts can also be extruded. The initial piece is a thick-walled tube, and the extruded part is shaped between a die on the outside of the tube and a mandrel held on the inside.

In impact extrusion (also called back-extrusion) (штамповка выдавливанием), the workpiece is placed in the bottom of a hole and a loosely fitting ram is pushed against it. The ram forces the metal to flow back around it, with the gap between the ram and the die determin­ing the wall thickness. The example of this process is the manufacturing of aluminum beer cans.

 

Vocabulary :


useful — полезный

shape — форма, формировать

rolling — прокатка

extrusion — экструзия, выдавливание

drawing — волочение

forging — ковка

sheet — лист

to subject — подвергать

amount — количество

condition — состояние, условие

perform — выполнять, проводить

to harden — делаться твердым, упрочняться

at least — по крайней мере

common — общий

billet — заготовка, болванка

orifice — отверстие

die — штамп, пуансон, матрица, фильера, во­лочильная доска

cross section — поперечное сечение

window frame — рама окна

tube — труба

hollow — полый

initial — первоначальный, начальный

thick-walled — толстостенный

mandrel — оправка, сердечник

impact — удар

loosely — свободно, с зазором

fitting — зд. посадка

ram — пуансон, плунжер

force — сила

gap — промежуток, зазор

to determine — устанавливать, опреде­лять


General understanding:

1. Why are metals so important in industry?

2. What are the main metalworking processes?

3. Why are metals worked mostly hot?

4. What properties does cold working give to metals?

5. What is rolling? Where is it used?

6. What is extrusion? What shapes can be obtained after extrusion?

7. What are the types of extrusion?

 

Exercise 3.1. Find the following in the text:

1. могут легко деформироваться

2. нужные формы

3. подвергать большим деформациям

4. зерна свободные от деформации

5. температура перекристаллизации

6. пластическая деформация сжатия

7. самый обычный процесс обработки металла

8. самое обычное изделие проката

9. отверстие фильеры

10. первоначальный

11. сложное сечение

12. пустотелые детали

13. свободно входящий плунжер

14. зазор между плунжером (пуансоном) и штампом

15. толщина стенки

Exercise 3.2. Translate into English:

1. Способность металла перекристаллизовываться при высокой температуре используется при горячей обработке.

2. Перекристаллизация — это рост новых, свобод­ных от деформации зерен.

3. Во время горячей обработки металл может под­вергаться очень большой пластической деформации сжатия.

4. Холодная обработка делает металл тверже и прочнее, но некоторые металлы имеют предел дефор­мации.

5. Листовой прокат может производиться горячим или холодным.

6. Поверхность холоднокатаного листа более глад­кая и он прочнее.

7. Поперечное сечение фильеры для экструзии мо­жет быть простым или сложным.

8. Алюминиевые и медные сплавы являются наи­лучшими для экструзии из-за их пластичности при деформации.

9. Алюминиевые банки, тюбики для зубной пасты являются примерами использования штамповки вы­давливанием.

10. Толщина стенки алюминиевой банки определя­ется зазором между пунсоном и штампом.

 



Text В: DRAWING

Drawing consists of pulling metal through a die. One type is wire drawing. The diameter reduction that can be achieved in one die is limited, but several dies in se­ries can be used to get the desired reduction.

Sheet metal forming

Sheet metal forming (штамповка листового металла) is widely used when parts of certain shape and size are needed. It includes forging, bending and shearing. One characteristic of sheet metal forming is that the thick­ness of the sheet changes little in processing. The metal is stretched just beyond its yield point (2 to 4 percent strain) in order to retain the new shape. Bending can be done by pressing between two dies. Shearing is a cutting operation similar to that used for cloth.

Each of these processes may be used alone, but often all three are used on one part. For example, to make the roof of an automobile from a flat sheet, the edges are gripped and the piece pulled in tension over a lower die. Next an upper die is pressed over the top, finishing the forming operation (штамповку), and finally the edges are sheared off to give the final dimensions.

Forging

Forging is the shaping of a piece of metal by pushing with open or closed dies. It is usually done hot in order to reduce the required force and increase the metal's plas­ticity.

Open-die forging is usually done by hammering a part between two flat faces. It is used to make parts that are too big to be formed in a closed die or in cases where only a few parts are to be made. The earliest forging machines lifted a large hammer that was then dropped on the workpiece, but now air or steam hammers are used, since they allow greater control over the force and the rate of forming. The part is shaped by moving or turning it be­tween blows.

Closed-die forging is the shaping of hot metal within the walls of two dies that come together to enclose the workpiece on all sides. The process starts with a rod or bar cut to the length needed to fill the die. Since large, complex shapes and large strains are involved, several dies may be used to go from the initial bar to the final shape. With closed dies, parts can be made to close toler­ances so that little finish machining is required.

Two closed-die forging operations are given special names. They are upsetting and coining. Coining takes its name from the final stage of forming metal coins, where the desired imprint is formed on a metal disk that is pressed in a closed die. Coining involves small strains and is done cold. Upsetting involves a flow of the metal back upon itself. An example of this process is the push­ing of a short length of a rod through a hole, clamping the rod, and then hitting the exposed length with a die to form the head of a nail or bolt.

Vocabulary:


to pull — тянуть

reduction — сокращение

to achieve — достигать

in series — серия, последовательно

beyond — выше, свыше

yield point — точка текучести металла

to retain — сохранять, удерживать

to bend — гнуть

shearing — обрезка, отрезание

edge — край

to grip — схватывать

lower die — нижний штамп

upper die — верхний штамп

forming operation — операция штампования

dimension — измерение, размеры

required — необходимый

increase — увеличение

open-die forging — ковка в открытом штампе (под­кладном)

hammering — ковка, колотить

within — внутри, в пределах

to enclose — заключать

rod — прут, стержень

bar — прут, брусок

involved — включенный

tolerance — допуск

upsetting — высадка, выдавливание

blow — удар

coining — чеканка

imprint — отпечаток

clamp — зажим

to hit — ударять


General understanding:

1. How can the reduction of diameter in wire drawing be achieved?

2. What is sheet metal forming and where it can be used?

3. What is close-die forging?

4. What is forging?

5. What are the types of forging?

6. What types of hammers are used now?

7. Where are coining and upsetting used?

8. What process is used in wire production?

9. Describe the process of making the roof of a car.

Exercise 3.3. Find the following word combina­tions in the text:

1. протягивание металла через фильеру

2. волочение проволоки

3. уменьшение диаметра

4. толщина листа

5. растягивать выше точки текучести

6. сохранить новую форму

7. края отрезаются

8. конечные размеры

9. уменьшить необходимое усилие

10. увеличить пластичность металла

11. воздушные или паровые молоты

12. сила и скорость штампования

13. внутри стенок двух штампов

14. отделочная обработка

15. малые допуски

Exercise 3.4. Translate into English:

1. При волочении проволоки диаметр отверстия во­лочильной доски каждый раз уменьшается.

2. Штамповка листового металла включает в себя ковку, изгиб и обрезку.

3. Небольшая деформация листа при растяжении помогает сохранить новую форму детали.

4. Изменение формы при штамповке производится путем сжатия между двумя штампами.

5. Края листа при штамповке отрезаются для по­лучения конечных размеров.

6. При проковке деталь должна быть горячей для уменьшения необходимых усилий и увеличения пла­стичности металла.

7. После ковки в закрытых штампах детали не тре­буют большой механической обработки.

8. При чеканке деформация металла невелика и отпечаток формируется на поверхности металла.

9. Высадка используется для изготовления головок гвоздей и болтов.



UNIT 4

Vocabulary


bar— брусок, прут

completely — полностью, совершенно

compression — сжатие

creep — ползучесть

cross-sectional area — площадь поперечного сечения

cyclic stress — циклическое напряжение

decrease — уменьшение

elastic deformation — упругая деформация

elastic limit — предел упругости

exceed — превышать

external forces — внешние силы

fatigue — усталость металла

fracture — перелом, излом

loosen — ослаблять, расшатывать

permanent deformation — постоянная деформация

remaining — оставшийся

shear — срез

simultaneously — одновременно

to stretch — растягивать

technique — методы

tension — напряженность

to propagate — распространяться

to bend — гнуть, согнуть

to extend — расширять, продолжаться

to meet the needs — отвечать требованиям

to occur — происходить

to respond — отвечать реагировать

to suffer — страдать

torsion — кручение

twisting — закручивание, изгиб

volume — объем, количество

rupture — разрыв


General understanding:

1. What are the external forces causing the elastic deformation of materials?

Describe those forces that change the form and size of materials.

   2. What are the results of external forces?

3. What kinds of deformation are the combinations of tension and compression?

4. What is the result of tension? What happens if the elastic limit of material is exceeded under tension?

5. What do we call fatigue? When does it occur? What are the results of fatigue?

6. What do we call creep? When does this type of per­manent deformation take place? What are the results of creep?

 

Exercise 4.1. Find the following in the text:

1. отвечать требованиям современной технологии

2. используя лабораторные методы

3. новые способы использования металлов

4. сжатие, растяжение, изгиб, кручение, срез

5. возвращать первоначальный размер и форму

6. внешняя сила

7. постоянная деформация

8. уменьшение объема

9. растягивающие и сжимающие силы

10. превышать предел упругости материала

11. повторяющиеся циклические напряжения

12. разрушение материала

13. развитие и распространение мелких трещин

14. сопротивление материалов ползучести

 

Exercise 4.2. Translate into English the following sentences:

1. Упругая деформация — это реакция всех мате­риалов на внешние силы, такие, как растяжение, сжа­тие, скручивание, изгиб и срез.

2. Усталость и ползучесть материалов являются результатом внешних сил.

3. Внешние силы вызывают постоянную деформа­цию и разрушение материала.

4. Растягивающие и сжимающие силы работают одновременно, когда мы изгибаем или скручиваем материал.

5. Растяжение материала выше предела его упру­гости дает постоянную деформацию или разрушение.



UNIT 5

MATERIALS TECHNOLOGY

TEXT A. CHANGES IN MATERIALS TECHNOLOGY

TEXT В . WORKING WITH NEW MATERIALS

TEXT C. METAL CASTING - A BASIC MANUFACTURING   PROCESS

TEXT D. METAL CUTTING

TEXT A. CHANGES IN MATERIALS TECHNOLOGY

Since the technology of any age is founded upon the materials of the age, the era of new materials will have a profound effect on engineering of the future.

Not only new materials, but related, and equally important, new and improved and less wasteful processes for the shaping, treating and finishing of both traditional and new materials are continuously being developed.

It is important that an engineer should be familiar with them. These include casting, injection molding and rotational molding of components of ever increasing size, complexity and accuracy; manufacture of more complex components by powder metallurgy techniques; steel forming and casting processes based on new, larger and more mechanized machines, giving reduced waste and closer tolerances; the avoidance of waste in forging by the use of powder metallurgy or cast pressforms and new finishing processes for metals and plastics, just to name a few. A high proportion of these processes is aimed at the production of complex, accurate shapes with a much smaller number of operations and with far less waste than the traditional methods of metal manufacture.

Joining techniques have developed to unprecedented level of sophisti­cation and are also providing opportunities for economies. It is necessary to mention that these newer techniques allow the manufacture of complicated parts by welding together simpler sub-units requiring little machining; such assemblies can be made from a variety of materials. The methods can also be used effectively for assembly, allowing savings to be made in both materials and machine utilization.

The brief review of new processes above has indicated that a new materials technology is rapidly emerging, providing new opportunities and challenges for imaginative product design and for more efficient manufacture.

 Exercise 5.1.Translate the sentences, which of them are not correct.

1. Joining techniques have developed to the high level of sophistication.

Joining techniques are developing to a high level of sophistication. 2. The review of new processes has indicated that a new materials technology is rapidly developing. The review of new processes is indicating that a new materials technology is rapidly developing. 3. The avoidance of waste in forging has been achievedby the use of powder metallurgy. The avoidance of waste in forging is being achieved by the use of powder metallurgy.

Exercise 5.2.Translate the sentences:

1. They also undertake the training of people who want to work at the new plant but do not have the required qualification. 2. The students know how to conduct this experiment. 3. The students know how they have to conduct this experiment. 4. He shows me the results of his work. 5. He shows me what results he has obtained. 6. There is a growing need for engineers who are familiar with the fundamental problems in metal processing and manufacturing. 7. There is a growing need for engineers familiar with the fundamental problems in metal processing and manufacturing. 8. When new types of autos are designed all the latest achievements of scientific and engineering progress are taken into account. 9. When designing new types of autos all the latest achieve­ments of scientific and engineering progress are taken into account.

10. On receiving his diploma the engineer does not finish his education.

11. When the engineer receives his diploma he does not finish his education.

 

Exercise 5.3. Answer the questions:

1. Is materials technology changing nowadays? 2. What do new manufacturing processes include? 3. What are they aimed at? 4. Can complicated parts be manufactured by welding together simpler sub-units? 5. Can these assemblies be made from a variety of materials? 6. What has the brief review of new materials and processes indicated? 7. Why is it necessary for an engineer to know these processes?

TEXT В . WORKING WITH NEW MATERIALS

A successful design is almost always a compromise among highest performance, attractive appearance, efficient production, and lowest cost. Achieving the best compromise requires satisfying the mechanical requirements of the part, utilizing the most economical material that will perform satisfactorily, and choosing a manufacturing process compatible with the part design and material choice. Stating realistic requirements for each of these areas is of the utmost importance.

The rapidity of change in materials technology is typified by the fact that plastics, a curiosity at the turn of the 20th century, are now being used in volumes which have for many years exceeded those of all the non-ferrous metals put together, and which are beginning to rival steel.

The changes which are taking place are, of course, not only quan­titative. They are associated with radical changes in technology — in the range and nature of the materials and processes available to the engi­neer.

The highest specific strength (i.e. the strength available from unit weight of material) now available comes from non-metals, such as fibreglass, and from metals, such as berillium and titanium, and new ultra­high strength steels.

Fibre technology, in its modern form, is of more recent origin than plastics, but composites based on glass and/or on carbon fibres are already being applied to pressure vessels, to lorry cabs and to aircraft engines, and may well replace aluminium for the skin and structure of aircraft. An all-plastic car has been exhibited: nearly the whole car, except the engine and transmission is of plastics or reinforced plastics.

It is not only plastics and their reinforcement which are changing the materials scene. Ceramics too are gaining an increasing foothold. Their impact as tooling materials in the form of carbides, nitrides and oxides is also well known — cutting tools made of these materials are allowing machining rates which had previously been considered quite impossible,

Silicon nitride seems to offer particular promise for a wide variety of applications. Among these is liquid metal handling. Pumps for conveying liquid aluminium are now on trial which could revolutionize the foundry industry. Silicon nitride is also being tested for the bearing surfaces of the Wankel rotary engines which are being developed as potential replace­ments for the conventional piston engines of our motor cars. And ce­ramic magnets have replaced the traditional steel pole-piece plus cop­per field coil for providing the engineering field for many electric motors.

It is clear that the number of combinations of all kinds of original trends in the production of new materials is practically unlimited. This, in turn, opens new realms for the designing of still cheaper, effective and unthinkably perfected, compared to that we have today, machines and mechanisms.

Exercise 5.4. Make up questions to the text B.

TEXT C. METAL CASTING -A BASIC MANUFACTURING PROCESS

One of the basic processes of the metalworking industry is the production of metal castings. A casting may be defined as "a metal object obtained by allowing molten metal to solidify in a mold", the shape of the object being determined by the shape of the mold cavity. A foundry is a commercial establishment for producing castings.

Numerous methods have been developed through the ages for producing metal castings but the oldest method is that of making sand castings in the foundry. Primarily, work consists of melting metal in a furnace and pouring it into suitable sand molds where it solidifies and assumes the shape of the mold.

Most castings serve as details or component parts of complex machines and products. In most cases they are used only when they are machined and finished to specified manufacturing tolerances providing easy and proper assembly of the product.

At present the foundry industry is going through a process of rapid transformation, owing to modern development of new technological methods, new machines and new materials. Because of the fact that casting methods have advanced rapidly owing to the general mechanical progress of recent years there is today no comparison between the quality of castings, the complexity of the patterns produced and the speed of manufacture with the work of a few years ago.

TEXT D. METAL CUTTING

Cutting is one of the oldest arts practiced in the stone age, but the cutting of metals was not found possible until the 18th century, and its detailed study started about a hundred years ago.

Now in every machine-shop you may find many machines for working metal parts, these cutting machines are generally called machine-tools and are extensively used in many branches of engineering. Fundamentally all machine-tools remove metal and can be divided into the following categories:

Boring machines.

Machining of large-volume production parts is best accomplished by screw machines. These machines can do turning, threading, facing, boring and many other operations. Machining can produce symmetrical shapes with smooth surfaces and dimensional accuracies not generally attainable by most fabrication methods.

Screw-machined parts are made from bar stock or tubing fed inter­mittently and automatically through rapidly rotating hollow spindles. The cutting tools are held on turrets and tool slides convenient to the cutting locations. Operations are controlled by cams or linkages that position the work, feed the tools, hold them in position for the proper time, and then retract the tools. Finished pieces are automatically separated from the raw stock and dropped into a container.

Bushings, bearings, nuts, bolts, studs, shafts and many other simple and complex shapes are among the thousands of products produced on screw machines. Screw machining is also used to finish shapes produced by other forming and shaping processes.

Most materials and their alloys can be machined — some with ease, others with difficulty. Machinability involves three factors: 1. Ease of chip removal. 2. Ease of obtaining a good surface finish. 3. Ease of obtaining good tool life.

 Exercise 5.5. Complete the table:

 

Название станка

Операция

1. lathe (turning machine) токарный станок turning обточка 2.   drilling   3.     расточка 4. grinding machine       5. винторезный станок     6.   milling   7. cutting machine - - -........................................................ _      

 Exercise 5.6Complete the sentences choosing the suitable part from the second column. Translate them.

 


1. There are...

2. They are...

3. These machine-tools can perform...

4. Finished parts possess...

5. A lot of simple and complex shapes...

6. Screw-machining is also used...

7. Most engineering materials can be machined...

 

a) symmetrical shapes, high dimen­sional accuracies and smooth surfaces.

b) for finishing operations.

c) five general categories of ma­chine-tools.

d) can be produced on screw ma­chines.

e) turning, milling, grinding, bor­ing, etc. operations.

f) by machine-tools.

g) lathes, drilling, boring, milling and grinding machines.


 

 Exercise 5.7Answer the questions to the text "Metal Cutting".

1. When did the study of metal cutting start? 2. What is the purpose of metal cutting? 3. What machines are called "machine-tools"? 4. List the general categories of machine-tools. 5. What is the function of the spindle? 6. Where are cutting tools held? 7. By what means are cutting operations controlled? 8. List products produced on screw machines. 9. What are the general advantages of machining over other fabrication methods?

TEXT E. FACTORS AFFECTING MACHINABILITY

Machinability is generally assumed to be a function of tool edge life. The main factors which influence the behaviour, and thus the life of the edge of a cutting tool, are:

— the mechanical characteristics of the material being machined, such as its strength, hardness and metallurgical structure;

— the state of the casting, involving the skin finish, critical dimensions, machining allowances, slag inclusions, the presence of scabs, rust, dirt, etc.;

— the nature of the machining techniques being used;

— the characteristics of the machine-tool being used, such as machine efficiency, available power, and the rigidity of the setup.

Other factors aside, it is primarily the structure of the metal which determines its resistance to the cutting action of the tool, i. e. the potential rate of metal removal, and the resulting abrasion on the tool, i. e. the life of the cutting edge.

Structure, strength and machinability are interrelated to some extent — in general, increased strength implies reduced machinability. This basic relationship must be understood, otherwise difficulties may be experienced in the machine shop if the designer has specified a material with a higher strength than is necessary. Nevertheless, care should be taken in rating machinability on the basis of strength. For example, nodular irons are normally considerably stronger than flake-graphite types, but are likely to be easier to machine. It is therefore recommended that structure, rather than strength, be adopted as the basis for machining practice.

Hardness provides a more reliable guide to machinability than does strength, for hardness depends mainly on the matrix structure of the casting. Again, however, the relation is of a general nature only, for it is possible to have a metal which exhibits a low hardness value, but which has a very abrasive action on the cutting tool. For example, the presence of hard phosphide particles embedded in a soft, ferritic matrix reduces tool life considerably.

 

Exercise 5.8 Answer the questions    :

1. What are the main factors influencing the tool edge life? 2. Does the structure of the material influence machinability? In what way? 3. What does increased strength result in? 4. Why is hardness more reliable in determining machinability of a material than strength?



UNIT 6

MACHINE-TOOLS

Text A: MACHINE-TOOL

Text B: LATHE

Text D: DIES

Text A: MACHINE-TOOIS

Machine-tools are used to shape metals and other ma­terials. The material to be shaped is called the workpiece. Most machine-tools are now electrically driven. Ma­chine-tools with electrical drive are faster and more ac­curate than hand tools: they were an important element in the development of mass-production processes, as they allowed individual parts to be made in large numbers so as to be interchangeable.

All machine-tools have facilities for holding both the workpiece and the tool, and for accurately controlling the movement of the cutting tool relative to the workpiece. Most machining operations generate large amounts of heat, and use cooling fluids (usually a mixture of water and oils) for cooling and lubrication.

Machine-tools usually work materials mechanically but other machining methods have been developed lately. They include chemical machining, spark erosion to machine very hard materials to any shape by means of a continuous high-voltage spark (discharge) between an electrode and a workpiece. Other machining meth­ods include drilling using ultrasound, and cutting by means of a laser beam. Numerical control of machine-tools and flexible manufacturing systems have made it possible for complete systems of machine-tools to be used flexibly for the manufacture of a range of pro­ducts.

Vocabulary:


machine-tools — станки

electrically driven — с электроприводом

shape — форма

workpiece — деталь

accurate — точный

development — развитие

to allow — позволять, разрешать

interchangeable — взаимозаменяе­мый

facility — приспособление

relative —относительный

amount — количество

fluid — жидкость

to lubricate — смазывать

spark erosion — электроискровая об­работка

discharge — разряд

by means of — посредством

beam — луч

drilling — сверление

flexible — гибкий

range — ассортимент, диапазон




Text B: LATHE

Lathe is still the most important machine-tool. It pro­duces parts of circular cross-section by turning the workpiece on its axis and cutting its surface with a sharp stationary tool. The tool may be moved sideways to pro­duce a cylindrical part and moved towards the workpiece to control the depth of cut. Nowadays all lathes are power-driven by electric motors. That allows continuous rotation of the workpiece at a variety of speeds. The mod­ern lathe is driven by means of a headstock supporting a hollow spindle on accurate bearings and carrying either a chuck or a faceplate, to which the workpiece is clamped. The movement of the tool, both along the lathe bed and at right angle to it, can be accurately controlled, so ena­bling a part to be machined to close tolerances. Modern lathes are often under numerical control.

Vocabulary:


lathe — токарный станок

circular cross-section — круглое попереч­ное сечение

surface — поверхность

stationary — неподвижный, стационар­ный

sideways — в сторону

variety — разнообразие, разновидность

depth — глубина

headstock — передняя бабка

spindle — шпиндель

chuck — зажим, патрон

faceplate — планшайба

lathe bed — станина станка

to enable — давать возможность

tolerance — допуск


General understanding:

1. What are machine-tools used for?

2. How are most machine-tools driven nowadays?

3. What facilities have all machine-tools?

4. How are the cutting tool and the workpiece cooled during machining?

5. What other machining methods have been devel­oped lately?

6. What systems are used now for the manufacture of a range of products without the    use of manual labor?

7. What parts can be made with lathes?

8. How can the cutting tool be moved on a lathe?

9. How is the workpiece clamped in a lathe?

10. Can we change the speeds of workpiece rotation in a lathe?

11. What is numerical control of machine tools used for?

 

Exercise 6.1. Find English equivalents in the text:


1. обрабатываемый материал

2. электропривод

3. более точный

4. отдельные детали

5. процесс массового производства

6. приспособления для держания резца и детали

7. операции по механической обработке детали

8. высоковольтный разряд

9. сверление ультразвуком

10. резание с помощью лазерного луча

11. гибкие производственные системы

12. детали круглого сечения

13. поворачивать деталь вокруг ее оси

14. двигать в сторону, двигать по направлению к детали

15. глубина резания

16. непрерывное вращение детали

17. движение резца вдоль станины


Exercise 6.2. Translate into English :

1. Токарный станок позволяет производить детали круглого сечения.

2. Деталь зажимается в патроне или на планшайбе токарного станка.

3. Резец может двигаться как вдоль станины, так и под прямым углом к ней.

4. Современные токарные станки часто имеют циф­ровое управление.





Text С. MILLING MACHINE

In a milling machine the cutter (фреза) is a circular device with a series of cutting edges on its circumfer­ence. The workpiece is held on a table that controls the feed against the cutter. The table has three possible movements: longitudinal, horizontal, and vertical; in some cases it can also rotate. Milling machines are the most versatile of all machine tools. Flat or contoured surfaces may be machined with excellent finish and ac­curacy. Angles, slots, gear teeth and cuts can be made by using various shapes of cutters.

Shapers and Planers

The shaper (поперечно-строгальный станок) is used mainly to produce different flat surfaces. The tool slides against the stationary workpiece and cuts on one stroke, returns to its starting position, and then cuts on the next stroke after a slight lateral displacement. In general, the shaper can make any surface having straight-line ele­ments. It uses only one cutting-tool and is relatively slow, because the return stroke is idle. That is why the shaper is seldom found on a mass production line. It is, however, valuable for tool production and for workshops where flexibility is important and relative slowness is unimpor­tant.

The planer (продольно-строгальный станок) is the largest of the reciprocating machine tools. It differs from the shaper, which moves a tool past a fixed workpiece because the planer moves the workpiece to expose a new section to the tool. Like the shaper, the planer is intended to produce vertical, horizontal, or diagonal cuts. It is also possible to mount several tools at one time in any or all tool holders of a planer to execute multiple simultane­ous cuts.

Grinders

Grinders (шлифовальные станки) remove metal by a rotating abrasive wheel. The wheel is composed of many small grains of abrasive, bonded together, with each grain acting as a miniature cutting tool. The process gives very smooth and accurate finishes. Only a small amount of material is removed at each pass of the wheel, so grind­ing machines require fine wheel regulation. The pressure of the wheel against the workpiece is usually very light, so that grinding can be carried out on fragile materials that cannot be machined by other conventional devices.

Vocabulary:


milling machine — фрезерный станок

series — серия, ряд

cutting edge — режущий край, острие

circumference — окружность

to feed — подавать

longitudinal— продольный

horizontal — горизонтальный

vertical — вертикальный

versatile — универсальный

flat — плоский

contoured — контурный

angle — угол

slot — прорезь, паз

gear teeth — зубья шестерни

drill — дрель, сверло, сверлить

hole — отверстие

to enlarge — увеличивать

thread — резьба

portable — портативный

unit — единица, целое, узел

previously — ранее

to slide — скользить

stroke — ход

lateral — боковой

displacement — смещение

straight — прямой

idle — на холостом ходу

workshop — цех, мастерская

to mount — крепить

holder — держатель

to execute — выполнять

simultaneous — одновременный

multiple — многочисленный

grinder — шлифовальный станок

wheel — круг, колесо

bonded — скрепленный

to remove — удалять

pass — проход

fine — точный

conventional — обычный

device — устройство, прибор

fragile — хрупкий


General understanding:

1. What is the shape of a cutter in a milling machine?

2. What moves in a milling machine, a table or a cutter?

3. What possible movements has the table of a milling machine?

4. What kind of surfaces and shapes may be machined by a milling machine?

5. What can we use a drilling machine for?

6. What kinds of drilling machines exist?

7. What is rotated while boring, a cutter or a work-piece?

8. Describe the work of a shaper (planer).

9. What must be done to execute multiple simultane­ous cuts on a planer?

10. What is the working tool in a grinder?

11. Can we obtain a very smooth surface after grind­ing and why? 12. Can we grind fragile materials and why?

Exercise 6.3. Translate into English :

1. Токарный станок все еще остается самым важ­ным станком.

2. Все современные токарные станки оборудованы электроприводами.

3. Движение инструмента контролируется с высо­кой точностью.

4. Электропривод позволяет обрабатывать заготов­ку на различных скоростях.



Text D. DIES

Dies are tools used for the shaping solid materials, especially those employed in the pressworking of cold metals.

In presswork, dies are used in pairs. The smaller die, or punch, fits inside the larger die, called the matrix or, simply, the die. The metal to be formed, usually a sheet, is placed over the matrix on the press. The punch is mounted on the press and moves down by hydraulic or mechanical force.

A number of different forms of dies are employed for different operations. The simplest are piercing dies (пробивной штамп), used for punching holes. Bending and folding dies are designed to make single or compound bends. A combination die is designed to perform more than one of the above operations in one stroke of the press. A progressive die permits successive forming op­erations with the same die.

In coining, metal is forced to flow into two matching dies, each of which bears a engraved design.

Wiredrawing Dies

In the manufacture of wire, a drawplate (волочильная доска) is usually employed. This tool is a metal plate con­taining a number of holes, successively less in diameter and known as wire dies. A piece of metal is pulled through the largest die to make a coarse wire. This wire is then drawn through the smaller hole, and then the next, un­til the wire is reduced to the desired measurement. Wiredrawing dies are made from extremely hard mate­rials, such as tungsten carbide or diamonds.

Thread-Cutting Dies

For cutting threads on bolts or on the outside of pipes, a thread-cutting die (резьбонарезная плашка) is used. It is usually made of hardened steel in the form of a round plate with a hole in the center. The hole has a thread. To cut an outside thread, the die is lubricated with oil and simply screwed onto an unthreaded bolt or piece of pipe, the same way a nut is screwed onto a bolt. The correspond­ing tool for cutting an inside thread, such as that inside a nut, is called a tap (метчик).

 

Vocabulary:


chip — стружка

sharp — острый

friction — трение

content — содержание

range — диапазон

inexpensive — недорогой

to permit — позволять, разрешать

common — обычный

tungsten — вольфрам

ingredient — ингредиент

diamond — алмаз

tips — наконечники

ceramic — керамический

truing — правка, наводка, заточка

die — матрица, штамп

matrix — матрица

to employ — применять

to pierce — протыкать, прокалывать

to punch — пробивать отверстие

matching — сочетающийся, парный

coarse — грубый

wire — проволока

to draw — тащить, волочить

thread — резьба

hardened — закаленный

to lubricate — смазывать

to screw — привинчивать

nut — гайка

outside — наружный, внешний

inside — внутри, внутренний


Exercise 6.4. Find English equivalents in the text:


1. удалять металлическую стружку

2. острый режущий край

3. содержание углерода

4. режущая способность

5. сталь для скоростного резания

6. правка шлифовальных кругов

7. гидравлическое или механическое давление

8. различные формы штампов

Exercise 6.5. Translate the following sentences into Russian:

1. Все резцы и фрезы должны иметь острую режу­щую кромку.

2. Во время резания режущий инструмент и деталь имеют высокую температуру и должны охлаждаться.

3. Углеродистые стали часто используются для из­готовления резцов потому, что они недорогие.

4. Быстрорежущие стали содержат вольфрам, хром и ванадий.

5. Алмазы используются для резания абразивных материалов и чистовой обработки поверхности твер­дых материалов.

6. Для различных операций используют различные штампы.

7. Волочильные доски для проволоки делаются из очень твердых материалов.

8. Резьбонарезные плашки и метчики используют­ся для нарезки резьбы снаружи и внутри.

 




UNIT 7

AUTOMATION AND ROBOTICS

Text A: AUTOMATION

Text B: TYPES OF AUTOMATION

 Text C: ROBOTS IN MANUFACTURING

Text A: AUTOMATION

Automation is the system of manufacture perform­ing certain tasks, previously done by people, by machines only. The sequences of operations are controlled auto­matically. The most familiar example of a highly auto­mated system is an assembly plant for automobiles or other complex products.

The term automation is also used to describe non-manufacturing systems in which automatic devices can op­erate independently of human control. Such devices as automatic pilots, automatic telephone equipment and automated control systems are used to perform various operations much faster and better than could be done by people.

Automated manufacturing had several steps in its development. Mechanization was the first step necessary in the development of automation. The simplification of work made it possible to design and build machines that resembled the motions of the worker. These specialized machines were motorized and they had better production efficiency.

Industrial robots, originally designed only to perform simple tasks in environments dangerous to human work­ers, are now widely used to transfer, manipulate, and position both light and heavy workpieces performing all the functions of a transfer machine.

In the 1920s the automobile industry for the first time used an integrated system of production. This method of production was adopted by most car manufacturers and became known as Detroit automation.

The feedback principle is used in all automatic-con­trol mechanisms when machines have ability to correct themselves. The feedback principle has been used for centuries. An outstanding early example is the flyball governor, invented in 1788 by James Watt to control the speed of the steam engine. The common household ther­mostat is another example of a feedback device.

Using feedback devices, machines can start, stop, speed up, slow down, count, inspect, test, compare, and measure. These operations are commonly applied to a wide variety of production operations.

Computers have greatly facilitated the use of feedback in manufacturing processes. Computers gave rise to the development of numerically controlled machines. The motions of these machines are controlled by punched paper or magnetic tapes. In numerically controlled ma­chining centres machine tools can perform several dif­ferent machining operations.

More recently, the introduction of microprocessors and computers have made possible the development of computer-aided design and computer-aided manufacture (CAD and CAM) technologies. When using these systems a designer draws a part and indicates its dimensions with the help of a mouse, light pen, or other input device. Af­ter the drawing has been completed the computer automatically gives the instructions that direct a machining centre to machine the part.

Another development using automation are the flex­ible manufacturing systems (FMS). A computer in FMS can be used to monitor and control the operation of the whole factory.

Automation has also had an influence on the areas of the economy other than manufacturing. Small comput­ers are used in systems called word processors, which are rapidly becoming a standard part of the modern office. They are used to edit texts, to type letters and so on.

AUTOMATION IN INDUSTRY

Many industries are highly automated or use automa­tion technology in some part of their operation. In com­munications and especially in the telephone industry dialing and transmission are all done automatically. Rail­ways are also controlled by automatic signaling devices, which have sensors that detect carriages passing a par­ticular point. In this way the movement and location of trains can be monitored.

Not all industries require the same degree of automa­tion. Sales, agriculture, and some service industries are difficult to automate, though agriculture industry may become more mechanized, especially in the processing and packaging of foods.

The automation technology in manufacturing and as­sembly is widely used in car and other consumer product industries.

Nevertheless, each industry has its own concept of automation that answers its particular production needs.

Vocabulary:


automation — автоматизация

previously — ранее

sequence — последовательность

assembly plant — сборочный завод

non - manufacturing — непроизводственный

device — устройство, прибор

resemble — походить

efficiency — эффективность

flyball governor — центробежный регулятор

steam engine — паровоз

household thermostat — бытовой термостат

facilitate — способствовать

punched — перфорированный

aid — помощь

dimension — измерение, размеры


General understanding:

1. How is the term automation defined in the text?

2. What is the most «familiar example» of automation given in the text?

3. What was the first step in the development of automaton?

4. What were the first robots originally designed for?

5. What was the first industry to adopt the new integrated system of production?

6. What is feedback principle?

7. What do the abbreviations CAM and CAD stand for?

8. What is FMS?

9. What industries use automation technologies?

Exercise 7.1. Find the following words and word combinations in the text:


1. автоматические устройства

2. автоматизированное производство

3. выполнять простые задачи

4. как легкие, так и тяжелые детали

5. интегрированная система производства

6. принцип обратной связи

7. механизм может разгоняться и тормозить

8. компьютер автоматически посылает команды

9. высокоавтоматизированная система

10. непроизводственная система






Text В. TYPES OF AUTOMATION

Vocabulary


equipment — оборудование

sequence — последовательность

initial — первоначальный, начальный

investment — инвестиция, вклад

to facilitate — способствовать

rate — скорость, темп

assembly machines — сборочные машины

quantity — количество

non - productive — непроизводительный

changeover — переход, переналадка


General understanding:

1. What is the most important application of automa­tion?

2. What are the types of automation used in manu­facturing?

3. What is fixed automation?

4. What are the limitations of hard automation?

5. What is the best example of programmable auto­mation?

6. What are the limitations of programmable automa­tion?

7. What are the advantages of flexible automation?

8. Is it possible to produce different products one af­ter another using automation technology?

Exercise 7.2.Find equivalents in English in the text:


1. сфера применения 2. фиксированная последовательность операций 3. автоматические сборочные машины 4. определенные химические процессы 5. станок с числовым программным управлением 6. потерянное производственное время 7. разнообразная продукция






UNIT 8

TEXT A. JAMES WATT

TEXT C. BABBAGE, CHARLES

TEXT E. GEORGE STEPHENSON

 

TEXT A. JAMES WATT

James Watt was a Scottish inventor and mechanical engineer, known for his improvements of the steam engine.

Watt was born on January 19, 1736, in Greenock, Scotland. He worked as a mathematical-instrument maker from the age of 19 and soon became interested in improving the steam engine which was used at that time to pump out water from mines.

Watt determined the properties of steam, especially the relation of its density to its temperature and pres­sure, and designed a separate condensing chamber for the steam engine that prevented large losses of steam in the cylinder. Watt's first patent, in 1769, covered this device and other improvements on steam engine.

At that time Watt was the partner of the inventor John Roebuck, who had financed his researches. In 1775, however  Roebuck's interest was taken over by the manu­facturer Matthew Boulton, owner of the Soho Engineer­ing Works at Birmingham, and he and Watt began the manufacture of steam engines. Watt continued his re­search and patented several other important inventions, including the rotary engine for driving various types of machinery; the double-action engine, in which steam is admitted alternately into both ends of the cylinder; and the steam indicator, which records the steam pressure in the engine. He retired from the firm in 1800 and there­after devoted himself entirely to research work.

The misconception that Watt was the actual inventor of the steam engine arose from the fundamental nature of his contributions to its development. The centrifugal or flyball governor, which he invented in 1788, and which automatically regulated the speed of an engine, is of par­ticular interest today. It embodies the feedback princi­ple of a servomechanism, linking output to input, which is the basic concept of automation. The watt, the unit of power, was named in his honour. Watt was also a well-known civil engineer. He invented, in 1767, an attach­ment that adapted telescopes for use in the measurement of distances. Watt died in Heathfield, near Birmingham, in August 1819.

 

TEXT C. BABBAGE, CHARLES

Babbage, Charles (1792-1871), British mathemati­cian and inventor, who designed and built mechanical computing machines on principles that anticipated the modern electronic computer. Babbage was born in Teignmouth, Devon, and educated at the University of Cambridge. He became a Fellow of the Royal Society in 1816 and was active in the founding of the Analytical, the Royal Astronomical, and the Statistical Societies.

In the 1820s Babbage began developing his Difference Engine, a mechanical device that could perform simple mathematical calculations. Although Babbage started to build his machine, he was unable to complete it because of a lack of funding. In the 1830s Babbage began devel­oping his Analytical Engine, which was designed to carry out more complicated calculations, but this device was never built, too. Babbage's book, «Economy of Machines and Manufactures» (1832), initiated the field of study known today as operational research.

 

TEXT E. GEORGE STEPHENSON

George Stephenson was a British inventor and engi­neer. He is famous for building the first practical rail­way locomotive.

Stephenson was born in 1781 in Wylam, near New­castle upon Tyne, Northumberland. During his youth he worked as a fireman and later as an engineer in the coal mines of Newcastle. He invented one of the first miner's safety lamps independently of the British inventor Humphry Davy. Stephenson's early locomotives were used to carry loads in coal mines, and in 1823 he estab­lished a factory at Newcastle for their manufacture. In 1829 he designed a locomotive known as the Rocket, which could carry both loads and passengers at a greater speed than any locomotive constructed at that time. The success of the Rocket was the beginning of the construc­tion of locomotives and the laying of railway lines.

Robert Stephenson, the son of George Stephenson was a British civil engineer. He is mostly well-known known for the construction of several notable bridges.

He was born in 1803 in Willington Quay, near New­castle upon Tyne, and educated in Newcastle and at the University of Edinburgh. In 1829 he assisted his father in constructing a locomotive known as the Rocket, and four years later he was appointed construction engineer of the Birmingham and London Railway, completed in 1838. Stephenson built several famous bridges, includ­ing the Victoria Bridge in Northumberland, the Britan­nia Bridge in Wales, two bridges across the Nile in Damietta in Egypt and the Victoria Bridge in Montreal, Canada. Stephenson was a Member of Parliament from 1847 until his death in 1859.

 

Литература

Основные источники :

1. Голубев А.П. Английский язык: учеб.пособие/А.П. Голубев, Р.В. Балюк, И.П. Смирнова.- 11-е изд., испр.- М: Академия, 2012.- Среднее специальное образование.

Дополнительные источники:

2. В.Н. Бгашев, Е.Ю. Долматовская «Английский язык для студентов машиностроительных специальностей» М. Астрель 2007

3. А.Л. Пумпянский «Чтение и перевод английской технической литературы» ООО «Попурри» 1997

4. www.wikipedia.ru

 

Пояснительная записка

Данное пособие предназначено для студентов специальности 15.02.08 «Технология машиностроения» и соответствует требованиям к знаниям и умениям по дисциплине «Английский язык»

Пособие состоит из 8 уроков. Каждый урок посвящен определенной области  производства, которая раскрываются с помощью профессионально-направленных текстов. Пособие включает в себя введение, касающееся проблем технического перевода, текстовый материал, комплекс лексико-грамматических упражнений.

Основная задача пособия – подготовить студентов к самостоятельному чтению аутентичных текстов в соответствии с профессиональными целями деятельности. Студенты должны научиться переходить от просмотрового чтения к ознакомительному или к чтению с детальным извлечением информации (изучающему чтению) и наоборот.

Тексты призваны сформировать у сегодняшнего студента понятие о технологии машиностроения и современных требованиях, предъявляемых к человеку, который в будущем, став специалистом, будет развивать российскую  промышленность.

Для овладения всеми видами речевой деятельности студентам предлагается ряд заданий, разнообразные манипуляции со словами, словосочетаниями и предложениями с учетом особенностей текста, а также упражнения, формирующие навыки и умения дифференциации, трансформации и конструирования языковых единиц. При этом решаются конкретные учебные задачи (пересказ текста, извлечение необходимой информации, письменное сообщение). Задания направлены на обучение различным приёмам оперирования с текстом на всех этапах работы, что позволяет студентам развивать общие и профессиональные компетенции.

 

 

Содержание

 

1. Введение. Проблемы технического перевода 6
2. UNIT 1. Machine Building Text A. Trends in the  Modern  Machine-building  Industry Text B. Reliability Text C. Industrial  Engineering and Automation Text D. Five Basic  Techniques 10  
3. UNIT 2. Metals Text A: Metals Text B: Steel Text C: Methods of Steel Heat Treatment 16
4. UNIT 3. Metalworking Text A: Metalworking Processes: Rolling, Extrusion. Text B: Drawing, Forging, Sheet Metal Forming. Text C: Metalworking and Metal Properties.   22
5. UNIT 4. Materials Science and Technology. Text A: Materials Science and Technology. Text B: Mechanical Properties of Materials. 31
6. UNIT5. Materials Technology. Text A. Changes in Materials Technology. Text В. Working With New Materials. Text C. Metal Casting - a Basic Manufacturing Process. Text D. Metal Cutting. Text E. Factors affecting machinability. 38  
7. UNIT 6. Machine-Tools. Text A: Machine-tools. Text B: Lathe. Text C: Milling, boring, drilling machines. Shapers and Planers. Text D: Dies. 45
8. UNIT7. Automation and  Robotics Text A: Automation Text B: Types of Automation Text C: Robots in Manufacturing 53
9. UNIT 8. Famous People of  Science and Engineering TEXT A. James Watt TEXT B. Alfred Bernard Nobel TEXT C. Babbage, Charles TEXT D. James Prescott Joule 58

 

 

Введение .

Проблемы технического перевода

Цель всякого перевода с иностранного языка на родной – познакомить читателя с каким-либо текстом или содержанием устного текста. Перевод должен в полной мере соответствовать нормам того языка, на котором он сделан.

Для правильного понимания исходного английского текста необходимо научиться анализировать предложение, и этот анализ нужно начинать с нахождения главных членов предложения – подлежащего и сказуемого – и установления связей между всеми остальными членами предложения.

От правильного понимания излагаемых в зарубежных стать­ях и книгах фактов во многом зависит развитие нашей науки и техники. Языку научной и технической литературы присущ формально-логический стиль, требующий при переводе строго логического анализа.

Дата: 2019-02-25, просмотров: 847.