Микроорганизмы и их положение в системе живого мира. Номенклатура бактерий. Принципы классификации.
Принципы таксономии и номенклатуры микроорганизмов
Ж и в ы е о р г а н и з м ы (микроорганизмы)
Прокариоты:
Эубактерии
1. Грациликуты (тонкая клеточная стенка)
2. Фирмикуты (толстая клеточная стенка)
3. Тенерикуты (нет клеточной стенки)
Спирохеты, риккетсии, хламидии, микоплазмы, актиномицеты.
Архебактерии
4. Мендосикуты
Эукариоты: ЖивотныеРастенияГрибыПростейшие
Неклеточные формы жизни: ВирусыПрионыПлазмиды
Таксономия
Это наука, систематизирующая микроорганизмы
Вид – род – (триба) – семейством – порядок – класс – отдел – царство
Основной таксономической единицей является вид
Вид – это совокупность происходящих от одного предка, скрещивающихся популяций, обладающих общим генофондом и репродуктивной изоляцией.
Классификация бактерий с учетом особенности клеточной стенки (по Д. Берджини)
Д. Берджини предложил классифицировать бактерии прокариоты на 4 отдела:
1 группа: бактерии с тонкой клеточной стенкой, т.е. Гр- - Грациликуты;
2 группа: бактерии с толстой стенкой, т.е. Гр+ - Фирмикуты;
3 группа: бактерии, лишенные клеточные стенки – Тенерикуты;
4 группа: бактерии с дефектной клеточной стенкой (патогенных нет) – Мендозикуты – арибактерии.
Дифференциальные признаки микроорганизмов:
1. Морфологические (форма, размер) и тинкториальные свойства (способность воспринимать анилиновые красители);
2. Физиологическая активность;
3. Антигенная специфичность;
4. Биохимическая активность;
5. Генетическое родство;
6. Чувствительность к бактериофагам (?).
Морфология бактерий
По форме бактерии подразделяются на:
· Шаровидные (кокки) среди них различают - менингококки, пневмококки, гонококки, стафилококки, стрептококки, вейлонеллы;
· Палочковидные микроорганизмы – энтеробактерии, риккетсии, бациллы, клостридии, коринебактерии, микобактерии;
· Извитые микроорганизмы – вибрионы, спириллы, кампилобактерии, спирохеты (боррелии, лептоспиры, трепонемы).
Отношение к молекулярному кислороду:
- строгие аэробы
- строгие анаэробы
- факультативные анаэробы
Структура бактериальной клетки. Основные отличия прокариотов и эукариотов. Функции отдельных структурных элементов бактериальной клетки. Особенности химического состава клеточных стенок грамположительных и грамотрицательных бактерий.
Компоненты клеток | Прокариот | Эукариот |
Постоянные | Нуклеоид (подобие ядра) | Ядро |
Клеточная стенка | Клеточная оболочка | |
Цитоплазма | ЦИтоплазма | |
Рибосома 70S | Рибосома 80S | |
Мезосомы | Митохондрии | |
ЦПМ (цитоплазматическая мембрана) | ЦПМ | |
Аппарат ЭПС | ||
Центриоли | ||
Непостоянные | Жгутики | Вакуоли |
Пили (ворсинки) | Жгутики | |
Плазмиды (внехромосомные ) | Включения | |
Капсула | ||
Споры | ||
Включения |
Ханс Христиан Грам (1853 – 1939 гг.). Предложил метод окаршивания бактерий. Окраска по Граму делит бактерии на основе структуры их клеточной стенки на две группы: Гр+ прочно удерживают аналиновые красители, не обсцвечиватся при обработке спиртом, окрашиваются в синий цвет. Гр- обесцвечиваются спиртом и поэтому дополнительно докрашиваются фуксином (красный цвет).
Гр+ бактерии имеют толстую клеточную стенку, которая состоит из 5-6 слоев пептидогликана, связаных с тейхоевыми и липотейхоевыми кислотами, которые берут своё начало от ЦПМ (цитоплазматическая мембрана).
Гр- бактерии имеют тонкую клеточную стенку, в ней выделяют два слоя. 1-ый слой пластичный предсавлен липополисахаридами, фосфолипидами, белками; 2-ой слой ригидный образован 1-2 слоями пептидогликана. Синоним – эндотоксин.
Цитоплазматическая мембрана (ЦПМ)
Это обязательная структура клетки, представляющая собой белково-липидный комплекс, нарушение ее приводит к гибели.Составляет 8-15% сухих веществ клетки.Содержание белка 50-75%Липидов 15-45%Толщина 7,5-8нм
Главный липидный компонент - фосфолипиды, набор которых родо- и видо - специфичен. Функции липидов - поддержание механической стабильности мембраны и придание ей гидрофобных свойств. Мембранные белки это в основном ферменты.
Структура ЦПМ для растительных, животных и микробных клеток сходна. Два слоя белков и между ними двойной фосфолипидный слой.
Консистенция мембраны пластичная, почти жидкая, прочная связь с КС отсутствует. ЦПМ – это важный центр метаболитической активности. Она ответственна за поступление питательных веществ в клетку и вывод продуктов обмена. ЦПМ прокариот может впячиваться (инвагинировать) образуя мезосомы – это энергетические депо клетки, где происходит синтез АТФ.
Цитоплазма – внутренние содержимое клетки. Содержание цитоплазмы определяет тургор, который характеризуется осмотическим давлением (ОД). В норме ОД клетки эквивалентно давлению раствора сахарозы с массовой долей 10-20%. Если соотношение ОД клетки и среды нарушается, клетка может погибнуть.
Генетическийаппарат у бактерий – нуклеоид (генофор) – молекула ДНК (бактериальная хромосома) сильно спирализованная, замкнутая в кольцо. Каких-либо оболочек отделяющих содержимое цитоплазмы от ядра нет. У прокариот могут быть внехромосомные молекулы ДНК – плазмиды. Они более короткие, необязательные структуры, могут утрачиваться или приобретаться при делении.
Жгутик на 98% состоит из белка – флагеллина. Крепится с помощью «крюка» к базальному тельцу, которое располагается в клетке на уровне КС и ЦПМ. Вращательное движение жгутика способствует перемещению бактерий (3000 об/мин).
Расположение жгутиков: 1.монотрихальное расположение (1 жгутик)2.политрихальное расположение (несколько жгутиков), может быть лофотрихальное, амфитрихальное, перитрихальное.
Споры - своеобразная форма покоящихся бактерий с грамположительным типом строения клеточной стенки.Спорообразование - это способ сохранения вида (генофора) во внешней среде при неблагоприятных условиях, а не способ размножения.Споры образуются при неблагоприятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.). Внутри бактериальной клетки образуется одна спора (эндоспора). Расположение в клетке: терминальное (у возбудителя столбняка), субтерминальное (ботулизм, газовая гангрена), центральное (сибиреязвенная бацилла)
Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от 80S-рибосом, характерных для эукариотических клеток. Поэтому некоторые антибиотики, связываясь с рибосомами бактерий, подавляют синтез бактериального белка, не влияя на синтез белка эукариотических клеток
Капсула — слизистая структура толщиной более 0,2 мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпечатках из патологи-ческого материала. В чистых культурах бактерий капсула образуется реже. Капсула состоит из полисахаридов (экзополисахаридов), иногда — из полипептидов; например, у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, препятствует фагоцитозу бактерий. Капсула антигенна: антитела против капсулы вызывают ее увеличение (реакция набухания капсулы).Многие бактерии образуют микрокапсулу — слизистое образование толщиной менее 0,2 мкм, выявляемое лишь при электронной микроскопии.Функции. 1. В организме предохраняет бактерии от фагоцитоза и действия антител.2. Во внешней среде предохраняет бактерии от высыхания.
Пили (pili), синонимы: ворсинки, фимбрии, - тонкие полые нити белковой природы, покрывающие поверхность бактериальных клеток. В отличие от жгутиков не выполняют двигательную функцию. Пили отходят от поверхности клетки и состоят из белка пилина. По своему функциональному назначению подразделяются на 2 типа.1) Пили первого типа имеются у большинства бактерий, поэтому они получили название "ворсинки общего типа" (common pili). Обусловливают прикрепление или адгезию бактерий к определенным клеткам организма хозяина. Адгезия является первоначальной стадией любого инфекционного процесса.
2) Пили второго типа (синонимы: конъюгативные, или половые - sex pili) имеются только у бактерий-доноров, имеющих специальную плазмиду. Их количество невелико - 1-4 на клетку.
Половые пили выполняют следующие функции:
1. Участвуют в передаче генетического материала от одной клетки к другой при конъюгации бактерий.
2. На них адсорбируются специфические вирусы бактерий - бактериофаги.
5. Основные методы изучения морфологии бактерий. Бактериоскопический метод. Методы окраски микробов и их отдельных структур. Методы микроскопии (люминесцентная, темнопольная, фазово-контрастная, электронная).
Методы микроскопии (люминесцентная, темнопольная, фазово-контрастная, электронная).
Люминесцентная (или флюоресцентная) микроскопия. Основана на явлении фотолюминесценции.
Люминесценция — свечение веществ, возникающее после воздействия на них каких-либо источников энергии: световых, электронных лучей, ионизирующего излучения. Фотолюминесценция — люминесценция объекта под влиянием света. Если освещать люминесцирующий объект синим светом, то он испускает лучи красного, оранжевого, желтого или зеленого цвета. В результате возникает цветное изображение объекта.
Темнопольная микроскопия. Микроскопия в темном поле зрения основана на явлении дифракции света при сильном боковом освещении взвешенных в жидкости мельчайших частиц (эффект Тиндаля). Эффект достигается с помощью параболоид- или кардиоидконденсора, которые заменяют обычный конденсор в биологическом микроскопе .
Фазово-контрастная микроскопия. Фазово-контрастное приспособление дает возможность увидеть вмикроскоп прозрачные объекты. Они приобретают высокую контрастность изображения, которая может быть позитивной или негативной. Позитивным фазовым контрастом называют темное изображение объекта в светлом поле зрения, негативным — светлое изображение объекта на темном фоне.
Для фазово-контрастной микроскопии используют обычный микроскоп и дополнительное фазово-контрастное устройство, а также специальные осветители.
Электронная микроскопия. Позволяет наблюдать объекты, размеры которых лежат за пределами разрешающей способности светового микроскопа (0,2 мкм). Электронный микроскоп применяется для изучения вирусов, тонкого строения различных микроорганизмов, макромолекулярных структур и других субмикроскопических объектов.
Простые и сложные методы окраски микробов Бактериоскопический метод исследования предусматривает изучение микроорганизмов в живом или фиксированном и окрашенном состоянии. Для изучения микроорганизмов в живом состоянии используют метод раздавленной капли и метод висячей капли. Наиболее часто применяют микроскопию бактерий в фиксированном и окрашенном состоянии. Для приготовления фиксированного и окрашенного препарата на обезжиренное предметное стекло наносят каплю воды или изотонического раствора хлорида натрия, в которую петлей вносят исследуемый материал и распределяют его таким образом, чтобы получить тонкий и равномерный мазок диаметром около 1-1,5 см. Если исследуют жидкий материал, то его непосредственно петлей наносят на предметное стекло и готовят мазок. Мазки высушивают на воздухе. Для фиксации используют физические и химические методы. Для фиксации мазка физическим методом предметное стекло медленно проводят 3 раза через пламя горелки. Мазки крови, мазки-отпечатки органов и тканей фиксируют химическим методом путем погружения их на 5-20 минут в метиловый или этиловый спирт и другие фиксирующие жидкости. Для окрашивания микробов используют простые и сложные методы. При простом методе фиксированный мазок окрашивают каким-либо одним красителем, например, водным раствором фуксина (1-2 минуты) или метиленовым синим (3-5 минут), промывают водой, высушивают и микроскопируют. Сложные методы окрашивания включают использование нескольких красителей. Это позволяет выявить определенные структуры клеток и дифференцировать одни виды микроорганизмов от других. Окраска по Граму: 1. На фиксированный мазок наносят карболово-спиртовый раствор генцианового фиолетового через полоску фильтровальной бумаги. Через 2-3 минуты ее снимают, а краситель сливают. 2. Наносят раствор Люголя на 1-2 минуты. 3. Обесцвечивают препарат этиловым спиртом в течение 30-60 секунд до прекращения отхождения фиолетовых струек красителя. 4. Промывают препарат водой. 5. Докрашивают мазок водным раствором фуксина в течение 1-2 минут, промывают водой, высушивают и микроскопируют. Грамположительные бактерии окрашиваются в фиолетовый цвет, грамотрицательные – в красный цвет. При окраске по методу Грама в модификации Синева на первом этапе используют фильтровальные бумажки, пропитанные генциановым или кристаллическим фиолетовым. Для этого полоски бумаги пропитывают 1% раствором красителя и высушивают. На фиксированный мазок помещают пропитанную красителем бумажку, заливают небольшим количеством воды и выдерживают в течение 2 минут. После этого бумажку удаляют пинцетом, сливают краску и, не промывая препарат водой, наносят раствор Люголя. Последующее окрашивание проводят общепринятым методом. Распределение микроорганизмов в зависимости от окраски по Граму: 1. Грамположительные бактерии: - кокки (за исключением гонококков и менингококков); - бациллы и клостридии (спорообразующие палочки); - микобактерии, коринебактерии и листерии. 2. Грамотрицательные бактерии: - некоторые кокки (гонококки и менингококки); - все остальные палочковидные бактерии; - все извитые формы (вибрионы, спириллы, спирохеты).
6. Рост и размножение бактерий. Фазы размножения.
Жизнедеятельность бактерий характеризуется ростом — формированием структурно-функциональных компонентов клетки и увеличением самой бактериальной клетки, а также размножением — самовоспроизведением, приводящим к увеличению количества бактериальных клеток в популяции.
Бактерии размножаются путем бинарного деления пополам, реже путем почкования. Актиномицеты, как и грибы, могут размножаться спорами. Актиномицеты, являясь ветвящимися бактериями, размножаются путем фрагментации нитевидных клеток. Грамположительные бактерии делятся путем врастания синтезирующихся перегородок деления внутрь клетки, а грамотрицательные — путем перетяжки, в результате образования гантелевидных фигур, из которых образуются две одинаковые клетки.
Делению клеток предшествует репликация бактериальной хромосомы по полуконсервативному типу (двуспиральная цепь ДНК раскрывается и каждая нить достраивается комплементарной нитью), приводящая к удвоению молекул ДНК бактериального ядра — нуклеоида.
Репликация ДНК происходит в три этапа: инициация, рост цепи, и терминация.
Размножение бактерий в жидкой питательной среде. Бактерии, засеянные в определенный, не изменяющийся объем питательной среды, размножаясь, потребляют питательные элементы, что приводит в дальнейшем к истощению питательной среды и прекращению роста бактерий. Культивирование бактерий в такой системе называют периодическим культивированием, а культуру — периодической. Если же условия культивирования поддерживаются путем непрерывной подачи свежей питательной среды и оттока такого же объема культуральной жидкости, то такое культивирование называется непрерывным, а культура — непрерывной.
При выращивании бактерий на жидкой питательной среде наблюдается придонный, диффузный или поверхностный (в виде пленки) рост культуры. Рост периодической культуры бактерий, выращиваемых на жидкой питательной среде, подразделяют на несколько фаз, или периодов:
1. лаг-фаза;
2. фаза логарифмического роста;
3. фаза стационарного роста, или максимальной концентрации бактерий;
4. фаза гибели бактерий.
Лаг-фаза — период между посевом бактерий и началом размножения. Продолжительность лаг-фазы в среднем 4—5 ч. Бактерии при этом увеличиваются в размерах и готовятся к делению; нарастает количество нуклеиновых кислот, белка и других компонентов.
Фаза логарифмического (экспоненциального) роста является периодом интенсивного деления бактерий. Продолжительность ее около 5— 6 ч. При оптимальных условиях роста бактерии могут делиться каждые 20—40 мин. Во время этой фазы бактерии наиболее ранимы, что объясняется высокой чувствительностью компонентов метаболизма интенсивно растущей клетки к ингибиторам синтеза белка, нуклеиновых кислот и др.
Затем наступает фаза стационарного роста, при которой количество жизнеспособных клеток остается без изменений, составляя максимальный уровень (М-концентрация).
Завершает процесс роста бактерий фаза гибели, характеризующаяся отмиранием бактерий в условиях истощения источников питательной среды и накопления в ней продуктов метаболизма бактерий.
Размножение бактерий на плотной питательной среде. Бактерии, растущие на плотных питательных средах, образуют изолированные колонии округлой формы с ровными или неровными краями (S- и R-формы), различной консистенции и цвета, зависящего от пигмента бактерий. Наиболее распространены среди микроорганизмов такие пигменты, как каротины, ксантофиллы и меланины.
Актиномицеты- антибиотики.
Самой богатой антагонистами группой почвенных микроорганизмов оказалась группа лучистых грибков, актиномицетов, а среди них — представители рода Actinomyces . Подавляющее большинство антибиотиков, нашедших применение в медицине и народном хозяйстве, получено именно из этой группы микроорганизмов.
Многочисленными работами советских и зарубежных исследователей установлено, что актиномицеты-антагонисты встречаются в различных природных субстратах, но больше всего их в почве (до нескольких миллионов в 1 г). В некоторых почвах можно обнаружить сравнительно небольшое количество актиномицетов, но почти все они оказываются антагонистами. Установлено, что в окультуренных, хорошо унавоженных почвах встречается больше актиномицетов-антагонистов, чем в почвах целинных, бедных органическим веществом, малоплодородных почвах. Много антагонистов было обнаружено Н. А. Красильниковым в почвах южных засушливых районов. Кроме климатических и географических условий, на содержание актиномицетов-антагонистов в почвах оказывают влияние также сезонность, растительный покров, микробное население, влажность, кислотность и тип почвы, снабжение ее кислородом и много других факторов.
Роль антибиотиков в биоценозах
Одной из характерных особенностей антибиотиков является избирательность действия — каждый антибиотик действует на определенный набор видов микроорганизмов, т. е. имеет свой специфический антимикробный спектр действия. Например, актиномицеты, принадлежащие к виду Actinomyces streptomycini, подавляют рост грамположительных и грамотрицательных бактерий, микобактерий, некоторых видов дрожжей и грибов. Actinomyces levoris не угнетает рост бактерий, но подавляет развитие дрожжей, некоторых дрожжеподобных организмов, мицелиальных грибов и т. д. Антимикробный спектр действия — один из таксономических признаков в систематике актиномицетов, служащих для разграничения видов. Вырабатываемые актиномицетом антибиотики не угнетают развития собственной культуры даже в концентрациях, которые во много раз превышают минимальную концентрацию, подавляющую рост других микроорганизмов.
Какова же биологическая роль антибиотиков? На этот вопрос однозначного ответа нет. Советские и многие зарубежные ученые считают, что способность синтезировать антибиотики — полезное для вида приспособление, выработавшееся и закрепленное в процессе эволюции организмов. Продуцирование антибиотиков — один из факторов, дающий определенные преимущества микроорганизму-антагонисту в борьбе за существование в сложных естественных микробных ассоциациях. Согласно другой точке зрения, антибиотики представляют собой «отбросы» обмена веществ у микроорганизма, не играющие приспособительной, эволюционной роли. Эта точка зрения разделяется 3. Ваксманом, X. Лешевалье и некоторыми другими зарубежными исследователями. Свою трактовку они обосновывают главным образом тем, что, во-первых, антибиотики образуются не всеми широко распространенными микробами; во-вторых, антибиотики быстро инактивируются в почве. Но продуцирование антибиотиков — лишь одно из приспособлений, выработанное микробами в борьбе за существование. Антагонизм микробов может обусловливаться и рядом других веществ, помимо антибиотиков, а также приспособительными механизмами, не связанными с образованием каких-либо химических соединений. Все это также может способствовать широкому распространению микробов, у которых не выявлена способность синтезировать антибиотики. К этому же следует добавить, что в лабораторных условиях, когда тот или иной актиномицет выращивают изолированно (вне естественного микробного сообщества) на искусственных питательных средах, не всегда удается выявить способность к синтезу антибиотика. То есть неактивные в лабораторных условиях штаммы актиномицетов способны к биосинтезу антибиотиков.
Действие физических и химических факторов на микроорганизмы. Понятие о стерилизации, дезинфекции, асептике и антисептике. Основные группы дезинфицирующих и антисептических веществ. Механизм их антибактериального действия.
Влияние физических факторов .
Влияние температуры. Различные группы микроорганизмов развиваются при определенных диапазонах температур. Бактерии, растущие при низкой температуре, называют психрофилами, при средней (около 37 °С) — мезофилами, при высокой — термофилами.
К психрофильным микроорганизмам относится большая группа сапрофитов — обитателей почвы, морей, пресных водоемов и сточных вод (железобактерии, псевдомонады, светящиеся бактерии, бациллы). Некоторые из них могут вызывать порчу продуктов питания на холоде. Способностью расти при низких температурах обладают и некоторые патогенные бактерии (возбудитель псевдотуберкулеза размножается при температуре 4 °С). В зависимости от температуры культивирования свойства бактерий меняются. Интервал температур, при котором возможен рост психрофильных бактерий, колеблется от -10 до 40 °С, а температурный оптимум — от 15 до 40 °С, приближаясь к температурному оптимуму мезофильных бактерий.
Мезофилы включают основную группу патогенных и условно-патогенных бактерий. Они растут в диапазоне температур 10— 47 °С; оптимум роста для большинства из них 37 °С.
При более высоких температурах (от 40 до 90 °С) развиваются термофильные бактерии. На дне океана в горячих сульфидных водах живут бактерии, развивающиеся при температуре 250—300 °С и давлении 262 атм.
Термофилы обитают в горячих источниках, участвуют в процессах самонагревания навоза, зерна, сена. Наличие большого количества термофилов в почве свидетельствует о ее загрязненности навозом и компостом. Поскольку навоз наиболее богат термофилами, их рассматривают как показатель загрязненности почвы.
Хорошо выдерживают микроорганизмы действие низких температур. Поэтому их можно долго хранить в замороженном состоянии, в том числе при температуре жидкого газа (—173 °С).
Высушивание. Обезвоживание вызывает нарушение функций большинства микроорганизмов. Наиболее чувствительны к высушиванию патогенные микроорганизмы (возбудители гонореи, менингита, холеры, брюшного тифа, дизентерии и др.). Более устойчивыми являются микроорганизмы, защищенные слизью мокроты.
Высушивание под вакуумом из замороженного состояния — лиофилизацию — используют для продления жизнеспособности, консервирования микроорганизмов. Лиофилизированные культуры микроорганизмов и иммунобиологические препараты длительно (в течение нескольких лет) сохраняются, не изменяя своих первоначальных свойств.
Действие излучения. Неионизирующее излучение — ультрафиолетовые и инфракрасные лучи солнечного света, а также ионизирующее излучение — гамма-излучение радиоактивных веществ и электроны высоких энергий губительно действуют на микроорганизмы через короткий промежуток времени. УФ-лучи применяют для обеззараживания воздуха и различных предметов в больницах, родильных домах, микробиологических лабораториях. С этой целью используют бактерицидные лампы УФ-излучения с длиной волны 200—450 нм.
Ионизирующее излучение применяют для стерилизации одноразовой пластиковой микробиологической посуды, питательных сред, перевязочных материалов, лекарственных препаратов и др. Однако имеются бактерии, устойчивые к действию ионизирующих излучений, например Micrococcus radiodurans была выделена из ядерного реактора.
Действие химических веществ . Химические вещества могут оказывать различное действие на микроорганизмы: служить источниками питания; не оказывать какого-либо влияния; стимулировать или подавлять рост. Химические вещества, уничтожающие микроорганизмы в окружающей среде, называются дезинфицирующими. Антимикробные химические вещества могут обладать бактерицидным, вирулицидным, фунгицидным действием и т.д.
Химические вещества, используемые для дезинфекции, относятся к различным группам, среди которых наиболее широко представлены вещества, относящиеся к хлор-, йод- и бромсодержащим соединениям и окислителям.
Антимикробным действием обладают также кислоты и их соли (оксолиновая, салициловая, борная); щелочи (аммиак и его соли,
Стерилизация – предполагает полную инактивацию микробов в объектах, подвергшихся обработке.
Дезинфекция — процедура, предусматривающая обработку загрязненного микробами предмета с целью их уничтожения до такой степени, чтобы они не смогли вызвать инфекцию при использовании данного предмета. Как правило, при дезинфекции погибает большая часть микробов (в том числе все патогенные), однако споры и некоторые резистентные вирусы могут остаться в жизнеспособном состоянии.
Асептика – комплекс мер, направленных на предупреждение попадания возбудителя инфекции в рану, органы больного при операциях, лечебных и диагностических процедурах. Методы асептики применяют для борьбы с экзогенной инфекцией, источниками которой являются больные и бактерионосители.
Антисептика – совокупность мер, направленных на уничтожение микробов в ране, патологическом очаге или организме в целом, на предупреждение или ликвидацию воспалительного процесса.
№ 33 Методы стерилизации, аппаратура.
Стерилизация предполагает полную инактивацию микробов в объектах, подвергающихся обработке.
Существует три основных метода стерилизации: тепловой, лучевой, химической.
Тепловая стерилизация основана на чувствительности микробов к высокой температуре. При 60 "С и наличии воды происходит денатурация белка, деградация нуклеиновых кислот, липидов, вследствие чего вегетативные формы микробов погибают. Споры, содержащие очень большое количество воды в связанном состоянии и обладающие плотными оболочками, инактивируются при 160—170 °С.
Для тепловой стерилизации применяют, в основном, сухой жар и пар под давлением.
Стерилизацию сухим жаром осуществляют в воздушных стерилизаторах (прежнее название — «сухожаровые шкафы или печи Пастера»). Воздушный стерилизатор представляет собой металлический плотно закрывающийся шкаф, нагревающийся с помощью электричества и снабженный термометром. Обеззараживание материала в нем производят, как правило, при 160 °С в течение 120 мин. Однако возможны и другие режимы: 200 °С - 30 мин, 180 "С - 40 мин.
Стерилизуют сухим жаром лабораторную посуду и другие изделия из стекла, инструменты, силиконовую резину, т. е. объекты, которые не теряют своих качеств при высокой температуре.
Большая часть стерилизуемых предметов не выдерживает подобной обработки, и поэтому их обеззараживают в паровых стерилизаторах.
Обработка паром под давлением в паровых стерилизаторах (старое название — «автоклавы») является наиболее универсальным методом стерилизации.
Паровой стерилизатор (существует множество его модификаций) — металлический цилиндр с прочными стенками, герметически закрывающийся, состоящий из водопаровой и стерилизующей камер. Аппарат снабжен манометром, термометром и другими контрольно-измерительными приборами. В автоклаве создается повышенное давление, что приводит к увеличению температуры кипения.
Поскольку кроме высокой температуры на микробы оказывает воздействие и пар, споры погибают уже при 120 °С. Наиболее распространенный режим работы парового стерилизатора: 2 атм — 121 °С — 15—20 мин. Время стерилизации уменьшается при повышении атмосферного давления, а следовательно, и температуры кипения (136 °С — 5 мин). Микробы погибают за несколько секунд, но обработку материала производят в течение большего времени, так как, во-первых, высокая температура должна быть и внутри стерилизуемого материала и, во-вторых, существует так называемое поле безопасности (рассчитанное на небольшую неисправность автоклава).
Стерилизуют в автоклаве бульшую часть предметов: перевязочный материал, белье, коррозионно-устойчивые металлические инструменты, питательные среды, растворы, инфекционный материал и т. д.
Одной из разновидностей тепловой стерилизации является дробная стерилизация, которую применяют для обработки материалов, не выдерживающих температуру выше 100 °С, например, для стерилизации питательных сред с углеводами, желатина. Их нагревают в водяной бане при 80 °С в течение 30—60 мин.
В настоящее время применяют еще один метод тепловой стерилизации, предназначенный специально для молока — ультравысокотемпературный (УВТ): молоко обрабатывают в течение нескольких секунд при 130—150 °С.
Химическая стерилизация предполагает использование токсичных газов: оксида этилена, смеси ОБ (смеси оксида этилена и бромистого метила в весовом соотношении 1:2,5) и формальдегида. Эти вещества являются ал-килирующими агентами, их способность в присутствии воды инактивировать активные группы в ферментах, других белках, ДНК и РНК приводит к гибели микроорганизмов.
Стерилизация газами осуществляется в присутствии пара при температуре от 18 до 80 °С в специальных камерах. В больницах используют формальдегид, в промышленных условиях — оксид этилена и смесь ОБ.
Перед химической стерилизацией все изделия, подлежащие обработке, должны быть высушены.
Этот вид стерилизации небезопасен для персонала, для окружающей среды и для пациентов, пользующихся простерилизованными предметами (большинство стерилизующих агентов остается на предметах).
Однако существуют объекты, которые могут быть повреждены нагреванием, например, оптические приборы, радио- и электронная аппаратура, предметы из нетермостойких полимеров, питательные среды с белком и т. п., для которых пригодна только химическая стерилизация. Например, космические корабли и спутники, укомплектованные точной аппаратурой, для их деконтаминации обезвреживают газовой смесью (оксид этилена и бромистого метила).
В последнее время в связи с широким распространением в медицинской практике изделий из термолабильных материалов, снабженных оптическими устройствами, например эндоскопов, стали применять обезвреживание с помощью химических растворов. После очистки и дезинфекции прибор помещают на определенное время (от 45 до 60 мин) в стерилизующий раствор, затем прибор должен быть отмыт стерильной водой. Для стерилизации и отмывки используют стерильные емкости с крышками. Простерилизованное и отмытое от стерилизующего раствора изделие высушивают стерильными салфетками и помещают в стерильную емкость. Все манипуляции проводят в асептических условиях и в стерильных перчатках. Хранят эти изделия не более 3 суток.
Лучевая стерилизация осуществляется либо с помощью гамма-излучения, либо с помощью ускоренных электронов.
Лучевая стерилизация является альтернативой газовой стерилизации в промышленных условиях, и применяют ее также в тех случаях, когда стерилизуемые предметы не выдерживают высокой температуры. Лучевая стерилизация позволяет обрабатывать сразу большое количество предметов (например, одноразовых шприцев, систем для переливания крови). Благодаря возможности широкомасштабной стерилизации, применение этого метода вполне оправданно, несмотря на его экологическую опасность и неэкономичность.
Еще одним способом стерилизации является фильтрование. Фильтрование с помощью различных фильтров (керамических, асбестовых, стеклянных), а в особенности мембранных ультрафильтров из коллоидных растворов нитроцеллюкозы или других веществ позволяет освободить жидкости (сыворотку крови, лекарства) от бактерий, грибов, простейших и даже вирусов. Для ускорения процесса фильтрации обычно создают повышенное давление в емкости с фильтруемой жидкостью или пониженное давление в емкости с фильтратом.
В настоящее время все более широкое применение находят современные методы стерилизации, созданные на основе новых технологий, с использованием плазмы, озона.
Рис. 1. Схема взаимодействия антигена с антителами.
Необходимое условие образование решетки (сетей) - наличие более трех антигенных детерминант на каждую молекулу антигена и по два активных центра на каждую молекулу антитела. Молекулы антигена являются узлами решетки, а молекулы антител - связующими звеньями. Область оптимальных соотношений (зона эквивалентности) концентраций антигена и антител, когда в надосадочной жидкости после образования осадка не обнаруживаются ни свободные антигены, ни свободные антитела.
Агрегаты, способные выпадать в осадок, образуются при соединении антигенов с полными антителами. Неполные антитела (моновалентные) не вызывают образования сетевых структур и крупных агрегатов. Для выявления таких антител используют специальные методы, основанные на использовании антиглобулинов (см. реакцию Кумбса).
Вакцинопрофилактика. Вакцины из живых бактерий и вирусов. Принципы получения вакцинных штаммов. Способы аттенуации. Примеры вакцин из живых бактерий и вирусов. Преимущества и недостатки аттенуированных вакцин.
Первое поколение вакцин – цельномикробные, цельновирионные
I. Живые:
· Дивергентные – содержат микроорганизмы находящиеся в близком родстве с возбудителями инфекционных заболеваний и обладающие перекрестной иммуногенностью.
1. БЦЖ – против туберкулеза.
2. Ротовирусная.
3. Оспенная (вирус коровьего бешенства).
4. Аттенуированные (ослабленные) вакцины: (Аттенуация (ослабление) возможна путём воздействия на штамм химических (мутагены) и физических (температура) факторов или посредством длительных пассажей через невосприимчивый организм)
Очень опасные и заразные:
· Чумная;
· Туляремийная;
· Сибиреязвенная;
· Бруцеллезная (2 вида);
Против вирусов:
· Паратитная;
· Коревая;
· Краснушная;
· Гриппозная живая, сухая, интраназальная, детская;
· Полимиелитная пероральная типов 1,2 и 3 из штаммов Сэбина (ОПР);
· Герпетическая;
· Аденовирусная;
Вакцины против
· Сыпно-тифозная;
· Вакцина желтой лихорадки;
· Вакцина лихорадки Ку.
Преимущества живых вакцин:
1. По механизму действия они напоминают дикие штаммы и вытесняют последние из организма;
2. Формируют эффективный гуморальный и клеточный иммунитет, так как размножаются и циркулируют в организме;
3. Легко проводить вакцинацию, так как необходимы небольшие дозы и требуется только однократная вакцинация.
Недостатки:
1. Содержат до 99% балласта – реактогенны (много побочных действий);
2. Способны вызывать мутации клеток организма;
3. Содержат вирусы-загрязнители;
4. Трудно дозируются, требуют особых условий хранения;
5. Есть возможность возвращения в вирулентную форму.
!!!Живые вакцины не ставят людям с иммунодефицитами!!!
Между введениями живых вакцин рекомендован интервал не менее 1 месяца, в противном случае возможны тяжелые побочные реакции, иммунный ответ может быть пониженным.
Вакцинопрофилактика. Вакцины из убитых бактерий и вирусов. Принципы приготовления. Примеры убитых вакцин. Ассоциированные вакцины. Преимущества и недостатки убитых вакцин.
II. Убитые (инактивированные). Убитые вакцины изготовляют из микрооргнизмов, убитых физическим (нагревание) или химическим (фенол, формалин, ацетон) методами.
1. Брюшно-тифозная спиртовая вакцина;
2. Лептоспирозная;
3. Холерная;
4. Имовакс Полио;
5. Гриппозная инактивирвоанная жидкая;
6. Вакцина против клещевого энцефалита;
7. ЭнцеВир, Энцепур (клещевой энцефалит);
8. Антирабическая;
9. Паратифная В;
10. Хаврикс (гепатит А);
11. Аваксим (Гепатит А);
12. Геп-А-ин-ВАК (Гепатит А).
Преимущества:
1. Стабильны и безопасны;
2. Легко дозируются.
Недостатки:
1. Реактогенны;
2. Содержат фенол;
3. Требуется вакцинация.
Ассоциированные вакцины.
Это комбинированные вакцины, в результате действия которых иммунтет формируется одновременно к нескольким инфекциям.
АКДС (ассоциированная коклюшно-дифтерийная столбнячная) – из убитых коклюшных бактерий и инактивированных экзотоксинов дифтерии и столбняка.
Тривакцина – из аттенуированных (ослабленных) вирусов кори, краснухи и праротита.
Тетракокк – из анатоксинов дифтерии и столбняка и убитых коклюшных бактерий и инактивированных вирусов полиомиелита.
Молекулярные вакцины: анатоксины. Получение. Использование анатоксинов для профилактики инфекционных заболеваний. Примеры вакцин.
Молекулярные вакцины – в них антиген находится в молекулярной форме или даже в виде фрагментов его молекул, определяющих специфичность т. е. в виде эпитопов, детерминант.
В процессе культивирования природных патогенных микробов можно получить протективный антиген, синтезируемый этими бактериями токсин затем превращается в анатоксин, сохраняющий специфическую антигенность и иммуногенность. Анатоксины являются одним из видов молекулярных вакцин. Анатоксины – препараты, полученные из бактериальных экзотоксинов, полностью лишенные своих токсических свойств, но сохранившие антигенные и иммуногенные свойства. Получение: токсигенные бактерии выращивают на жидких средах, фильтруют с помощью бактериальных фильтров для удаления микробных тел, к фильтрату добавляют 0,4% формалина и выдерживают в термостате при 30-40t на 4 недели до полного исчезновения токсических свойств, проверяют на стерильность, токсигенность и иммуногенность. Эти препараты называются нативными анатоксинам, в настоящее время почти не используются, т. к. содержат большое количество балластных веществ, неблагоприятно влияющих на организм. Анатоксины подвергаю физической и химической очистке, адсорбируют на адъювантах. Такие препараты называются адсорбированными высокоочищенными концентрированными анатоксинами.
Титрование анатоксинов в реакции фолликуляции производят по стандартной фолликулирующей атитоксической сыворотке, в которой известно количество антитоксических единиц. 1 антигенная единица анатоксина обозначается Lf, это то количество анатоксина, которое вступает в реакцию фолликуляции с 1 единицей дифтерийного анатоксина.
Анатоксины применяются для профилактики и реже, для лечения токсинемических инфекций дифтерия, газовая гангрена, ботулизм, столбняк). Так же анатоксины применяются для получения антитоксических сывороток путем гипериммунизации животных.
Примеры препаратов: АКДС, АДС, адсорбированный стафилококковый анатоксин, ботулинистический анатоксин, анатоксины из экзотоксинов возбудителей газовых инфекций.
61. Генно-инженерные вакцины. Получение. Применение. Преимущества и недостатки.
Генно-инженерные вакцины – это препараты, полученные с помощью биотехнологии, которая по сути сводиться к генетической рекомбинации .
Для начала получают ген, который должен быть встроен в геном реципиента. Небольшие гены могут быть получены методом химического синтеза. Для этого расшифровывается число и последовательность аминокислот в белковой молекуле вещества, затем по этим данным узнают очерёдность нуклеотидов в гене, далее следует синтез гена химическим путем.
Крупные структуры, которые довольно сложно синтезировать получаются путем выделения(клонирования), прицельного выщепления этих генетических образований с помощью рестриктаз.
Полученный одним из способов целевой ген с помощью ферментов сшивается с другим геном, который используется в качестве вектора для встраивания гибридного гена в клетку. Вектором могут служить плазмиды, бактериофаги, вирусы человека и животных. Экспрессируемый ген встраивается в бактериальную или животную клетку, которая начинает синтезировать несвойственное ей ранее вещество, кодируемое эксперссируемым геном.
В качестве реципиентов экспрессируемого гена чаще всего используется E. coli, B. subtilis, псевдомонады, дрожжи, вирусы. некоторые штаммы способны переключаться на синтез чужеродного вещества до 50% своих синтетических возможностей – эти штамм называются суперпродуцентами.
Иногда к генно-инженерным вакцинам добавляется адъювант.
Примерами таких вакцин служат вакцина против гепатита В (энджерикс), сифилиса, холеры, бруцеллёза, гриппа, бешенства.
Есть определённые сложности в разработке и применении:
- длительное время к генно-инженерным препаратам относились настороженно.
- на разработку технологии для получения вакцины затрачиваются значительные средства
- при получении препаратов данным способом возникает вопрос об идентичности полученного материала природному веществу.
Третье поколение вакцин – генно-иненерные вакцины
IV. Биосинтетические – искусственно созданные антигены микробов. Для их получения используют дрожжевую клетку, в которую встраивают ген патогенного микроорганизма, отвечающий за синтез данного антигена.
Вакцины от Гепатита В:
· Энджерикс (Бельгия);
· ДНК-рекомбинантная (США);
· Вакцина гепатита В рекомбинантная дрожжевая (Куба);
· Комбиотех ЛТД (Россия).
Преимущества:
4. Меньше побочных эффектов, так как не содержат микроорганизмов;
5. Вызывают узкоспецифический иммуитет;
6. Возможно комплектование по иммуногенным свойствам.
Недостатки:
Менее эффективны по сравнению с традиционными, так как вирусы вариабельны.
V. Векторные (рекомбинантные) вакцины – получают встраиванием генов различных возбудителей в геном ослабленного вируса или бактерии (вектор). Иммунитет формируется к нескольким инфекциям.
Вирус коровьей оспы | Рекомбинантные вакцины: 3. Моновалентные: · Гриппозная, герпетическая, гепатит В · Малярийный плазмодий; 4. Поивалентные · Против гепатита В, бешенства, клещевого энцефалита, ветряной оспы, гепатита А. |
Сальмонеллы | Против гепатита В |
VI. Рибосомальные вакцины – получают путем выделения микробных рибосом с матрицей иРНК = иммуномодуляторы.
ИРС-19;
Бронхомунал;
Рибомунил.
Сыворотки. Определение. Современная классификация сывороток. Требования, предъявляемые к сывороточным препаратам.
Источники антибиотиков.
Основными продуцентами природных антибиотиков являются микроорганизмы, которые, находясь в своей естественной среде (в основном, в почве), синтезируют антибиотики в качестве средства выживания в борьбе за существование. Животные и растительные клетки также могут вырабатывать некоторые вещества с селективным антимикробным действием (например, фитонциды), однако широкого применения в медицине в качестве продуцентов антибиотиков они не получили.
Таким образом, основными источниками получения природных и полусинтетических антибиотиков стали:
• Актиномицеты (особенно стрептомицеты) — ветвящиеся бактерии. Они синтезируют большинство природных антибиотиков (80 %).
• Плесневые грибы — синтезируют природные бета-лактамы (грибы рода Cephalosporium и Penicillium ) H фузидиевую кислоту.
• Типичные бактерии — например, эубактерии, бациллы, псевдомонады — продуцируют бацитрацин, полимиксины и другие вещества, обладающие антибактериальным действием.
Способы получения.
Существует три основных способа получения антибиотиков:
• биологический синтез (так получают природные антибиотики — натуральные продукты ферментации, когда в оптимальных условиях культивируют микробы-продуценты, которые выделяют антибиотики в процессе своей жизнедеятельности);
• биосинтез с последующими химическими модификациями (так создают полусинтетические антибиотики). Сначала путем биосинтеза получают природный антибиотик, а затем его первоначальную молекулу видоизменяют путем химических модификаций, например присоединяют определенные радикалы, в результате чего улучшаются противомикробные и фармакологические характеристики препарата;
• химический синтез (так получают синтетические аналоги природных антибиотиков, например хлорамфеникол/левомицетин). Это вещества, которые имеют такую же структуру,
Гепатит Е
Антропоноз, фекально – оральным механизмом передачи.
Таксономия: семейство Caliciviridae . Недавно переведен из семейства в группу гепатит Е-подобных вирусов.
Структура. Вирион безоболочечный, сферический.. Геном — однонитевая плюс-РНК, которая кодирует РНК-зависимую РНК-полимеразу, папаинподобную протеазу и трансмембранный белок, обеспечивающий внедрение вируса в клетку.
Эпидемиология, клиника. Основной путь передачи — водный. Инкубационный период 2—6 недели. Поражение печени, интоксикацией, желтухой.
Иммунитет. После перенесенного заболевания стойкий.
Микробиологическая диагностика : 1) серологический метод — в сыворотке, плазме крови с помощью ИФА определяют: антитела к вирусу (анти-HEV IgM, анти-HEV IgG); 2) молекулярно-генетический метод — применяют ПЦР для определения РНК вируса (HEV RNA) в кале и в сыворотке крови больных в острой фазе инфекции.
Лечение. Симптоматическое. Беременным рекомендуется введение специфического иммуноглобулина.
Профилактика. Неспецифическая профилактика - улучшение санитарно-гигиенических условий и снабжение качественной питьевой водой. Созданы неживые цельновирионные вакцины, разрабатываются рекомбинантные и живые вакцины.
105. Возбудитель клещевого энцефалита. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилактика.
Таксономия: семейство Flaviviridae, род Flavivirus.
Морфологические свойства: сложные, +РНК, структурные белки – V2капсид,V3суперкапсид,V1внутри от суперкапсида.
Имеет пять генотипов, имеющих некоторые антигенные различия, но только один структурный гликопротеин V-3 индуцирует образование вируснейтрализующих антител. Он обладает четкой антигенной консервативностью. Несмотря на небольшую устойчивость вируса к действию физических и химических факторов, в организме переносчиков он сохраняет свою жизнеспособность от —150С до +30С.
Резистентность: Высокая, к действию кислых значений рН, что важно при алиментарном пути заражения. Вирус обладает висцеротропностью и нейротропностью. К вирусу чувствительны белые мыши.
Эпидемиология: Переносчиком и основным резервуаром являются иксодовые клещи. У клещей происходит трансовариальная и трансфазовая передача вируса. Поддержание циркуляции осуществляется за счет прокормителей клещей — грызунов, птиц, диких животных. Характерна весенне-летняя сезонность.
Патогенез: Человек заражается трансмиссивно при укусе инфицированными клещами, от которых в период кровососания вирус проникает в макроорганизм. Проникновение вируса в организм возможно также контактным путем через мелкие повреждения кожи. Алиментарный путь заражения при употреблении сырого молока коз и овец. Употребление молока ведет к ощелачиванию желудочного сока, что препятствует инактивации вируса. Инкубационный период — от 8 до 23 дн.
Клиника: Сначала вирус размножается в месте входных ворот инфекции под кожей, откуда он попадает в кровь. Возникает резорбтивная вирусемия. Вирус проникает в эндотелий кровеносных сосудов, внутренних органов, где активно размножается. При пищевом пути заражения входными воротами является слизистая оболочка глотки и тонкой кишки. В конце инкубационного периода в эндотелии кровеносных сосудов возникает вторичная вирусемия, длящаяся 5 дн. Вирусы гематогенно, периневрально проникают в головной и спинной мозг, поражая мотонейроны (крупные двигательные клетки в сером веществе спинного мозга). Различают три клинические формы клещевого энцефалита: лихорадочную, менингеальную и очаговую.
Иммунитет: После перенесенного заболевания остается стойкий иммунитет. Вирус клещевого энцефалита относится к факультативным возбудителям медленных вирусных инфекций.
Микробиологическая диагностика: Выделение вируса из крови и цереброспинальной жидкости, внутренних органов и мозга путем интрацеребрального заражения мышей и культур клеток. Идентификацию вируса проводят в РТГА, РН и РСК, а в монослое культур клеток — в РИФ. Обнаружение антител в парных сыворотках и цереброспинальной жидкости проводят с помощью РСК и РТГА, а также других серологических реакций. Экспресс-диагностика основана на обнаружении вирусного антигена в крови с помощью РИГА и ИФА, выявлении IgM антител на первой неделе заболевания в цереброспинальной жидкости и обнаружении РНК-вируса в крови и цереброспинальной жидкости у людей, в клещах и внутренних органах животных с помощью ПЦР.
Лечение и профилактика: Для лечения и экстренной профилактики применяют специфический гомологичный донорский иммуноглобулин против клещевого энцефалита, полученный из плазмы доноров, проживающих в природных очагах клещевого энцефалита и содержащий в высоком титре антитела к вирусу клещевого энцефалита. При отсутствии препарата назначают специфический гетерологичный лошадиный иммуноглобулин. При лечении тяжелых форм применяют иммуногемосорбцию и серотерапию иммунной плазмой доноров. Применяют виферон, ридостин, рибонуклеазу.
Активная иммунизация – убитые вакцины:
1. Вакцина против клещевого энцефалита культуральная сорбированная инактивированная жидкая;
2. Вакцина против клещевого энцефалита культуральная очищенная концентрированная инактивированная сухая (вакцина клещевого энцефалита концентрированная), предназначенная для вакцинации взрослых;
3. Австрийская вакцина клещевого энцефалита культуральная очищенная концентрированная инактивированная для иммунизации детей;
4. Вакцина против клещевого энцефалита очищенная концентрированная инактивированная «Энцепур К»
5. Культуральная концентрированная инактивированная сухая вакцина для профилактики клещевого энцефалита у детей с 4-летнего возраста
Для формирования надежной защиты необходима ревакцинация, так как при вакцинации убитыми вакцинами формируется кратковременный иммунитет. Протективным действием обладает неструктурный белок NS1 вируса - растворимый комплементсвязывающий антиген. Он является компонентом для противовирусных вакцин.
106. Возбудитель бешенства. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилактика.
Таксономия: РНК-содержащий вирус, семейство Rhabdoviride, род Lyssavirus.
Морфология и антигенные свойства . Вирион имеет форму пули, состоит из сердцевины (РНП(рибонуклеопротеин) спирального типа и матриксного белка), окруженной липопротеиновой оболочкой с гликопротеиновыми шипами. Гликопротеин G отвечает за адсорбцию и внедрение вируса в клетку, обладает антигенными (типоспецифический антиген) и иммуногенными свойствами. Антитела к нему нейтрализуют вирус и выявляются в РН(рекция нейтрализации). РНП состоит из геномной однонитевой линейной минус-РНК и белков: N-белка, L-белка и NS-белка. РНП является группоспецифическим антигеном; выявляется в РСК, РИФ, РП.
Различают два вируса бешенства: дикий вирус, циркулирующий среди животных, патогенный для человека; фиксированный – не патогенный для человека.
Культивирование. Вирус культивируют путем внутримозгового заражения лабораторных животных (мышей, крыс) и в культуре клеток: фибробластов человека, куриного эмбриона. В нейронах головного мозга зараженных животных образуются цитоплазматические включения, содержащие антигены вируса (тела Бабеша-Негри – эозинофильные включения).
Резистентность: Вирус бешенства неустойчив: быстро погибает под действием солнечных и УФ-лучей, а также при нагревании до 60С. Чувствителен к дезинфицирующим веществам, жирорастворителям, щелочам и протеолитическим ферментам.
Эпидемиология. Источниками инфекции в природных очагах являются волки, грызуны. Вирус бешенства накапливается в слюнных железах больного животного и выделяется со слюной. Животное заразно в последние дни инкубационного периода (за 2—10 дней до клинических проявлений болезни). Механизм передачи возбудителя — контактный при укусах. Иногда заболевание развивается при употреблении мяса больных животных или при трансплантации инфицированных тканей (роговицы глаза).
У собаки после инкубационного периода (14дн.) появляются возбуждение, обильное слюнотечение, рвота, водобоязнь. Она грызет место укуса, бросается на людей, животных. Через 1—3 дня наступают паралич и смерть животного.
Патогенез и клиника. Вирус, попав со слюной больного животного в поврежденные наружные покровы, реплицируется и персистирует в месте внедрения. Затем возбудитель распространяется по аксонам периферических нервов, достигает клеток головного и спинного мозга, где размножается. Клетки претерпевают дистрофические, воспалительные и дегенеративные изменения. Размножившийся вирус попадает из мозга по центробежным нейронам в различные ткани, в том числе в слюнные железы. Инкубационный период у человека при бешенстве — от 10 дней до 3 месяцев. В начале заболевания появляются недомогание, страх, беспокойство, бессонница, затем развиваются рефлекторная возбудимость, спазматические сокращения мышц глотки и гортани.
Иммунитет: Человек относительно устойчив к бешенству. Постинфекционный иммунитет не изучен, так как больной обычно погибает. Введение людям, укушенным бешеным животным, инактивированной антирабической вакцины вызывает выработку антител, интерферонов и активацию клеточного иммунитета.
Микробиологическая диагностика: Постмортальная диагностика включает обнаружение телец Бабеша—Негри в мазках-отпечатках или срезах из ткани мозга, а также выделение вируса из мозга и подчелюстных слюнных желез. Тельца Бабеша—Негри выявляют методами окраски по Романовскому—Гимзе. Вирусные антигены в клетках обнаруживают с помощью РИФ.
Выделяют вирус из патологического материала путем биопробы на мышах: заражают интрацеребрально. Идентификацию вирусов проводят с помощью ИФА, а также в РН на мышах, используя для нейтрализации вируса антирабический иммуноглобулин.
Прижизненная диагностика основана на исследовании: отпечатков роговицы, биоптатов кожи с помощью РИФ; выделении вируса из слюны, цереброспинальной и слезной жидкости путем интрацеребрального инфицирования мышей. Возможно определение антител у больных с помощью РСК, ИФА.
Лечение. Симптоматическое; эффективное лечение отсутствует.
Профилактика. Выявление, уничтожение животных. Иммунизация антирабической вакциной собак. Специфическую профилактику проводят антирабической вакциной и антирабической сывороткой или иммуноглобулином. Инактивированная УФ- или гамма лучами культуральная вакцина. С лечебно–профилактической целью иммунизируют людей; формируется активный иммунитет.
107. Возбудитель краснухи. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилактика.
Таксономия. Семейство Togaviridae . Род Rubivirus .
Морфология. Вирион вируса сферической форму. Геном вируса представлен однонитчатой плюс-нитевой РНК, окруженной капсидом с кубическим типом симметрии и внешней липидсодержащей оболочкой, на поверхности которой находятся шипы. В структуре вириона три белка: С, Е1 и Е2. Е1 и Е2— гликопротеины, или шипы, расположенные во внешней оболочке вириона.
Резистентность. Вирус чувствителен к эфиру. Малоустойчив к действию физических и химических факторов, неустойчив в окружающей среде. Разрушение происходит под действием органических растворителей, УФ-лучей, солнечного света.
Антигенная структура. Вирус представлен одним серотипом. Он имеет внутренний нуклеокапсидный антиген С, выявляемый в РСК, и внешние антигены: Е2, выявляемый в РН, и Е1, или гемагглютинин, выявляемый в РГА и РТГА. Е2 — это протективный антиген вируса.
Культивирование. В первичных культурах клеток вирус можно обнаружить по феномену интерференции, в качестве индуктора для суперинфекции используют вирус ECHO-11 и вирус везикулярного стоматита. Вирус краснухи вызывает развитие ЦПД и образование бляшек под агаровым покрытием лишь в некоторых перевиваемых культурах клеток: ВНК-21, Vero, RK-21, SIRC, а также в первичных культурах клеток из тканей человеческого плода. Наилучшей культурой для репродукции и выявления ЦПД являются клетки ВНК-21. Вирус размножается в цитоплазме клеток, вызывая очаговую деструкцию клеточного монослоя и образование цитоплазматических эозинофильных включений. Обладает нейраминидазной активностью.
Эпидемиология. Факультативный возбудитель медленных вирусных инфекций. Антропоноз.
Источник - человек, опасный со 2 половины инкубационного периода и в течение 7 дней с момента появления сыпи. Выделение вируса из организма происходит с носоглоточным секретом, а также с мочой и испражнениями.
Пути передачи: воздушно-капельный и трансплацентарный.
Вирус, персистирующий в организме больного с врожденной краснухой, обладает повышенной вирулентностью.
Патогенез и проявления. Две формы болезни: приобретенная и врожденная.
Приобретённая краснуха. Входными воротами инфекции - слизистые оболочки верхних дыхательных путей → вирус в регионарные лимфатические узлы → размножается → поступает в кровь → разносится по органам → оседает в лимфатических узлах и эпителиальных клетках кожи → развивается иммунная воспалительная реакция, сопровождающаяся появлением пятнисто-папулезной сыпи.
Инкубационный период — от 11 до 24 дней
Проявления: незначительное повышение температуры и легкие катаральные симптомы → конъюнктивит → увеличение затылочных лимфатических узлов → пятнисто-папулезная сыпь, расположенная по всему телу.
Вирус выделяется из организма больных с секретом слизистых оболочек верхних дыхательных путей, а также с мочой и фекалиями. Он исчезает из крови через твое суток после появления сыпи, но сохраняется в секрете слизистых оболочек верхних дыхательных путей в течение 2 недель.
Иммунитет. Стойкий, напряженный. В ходе заболевания развивается вторичный иммунодефицит клеточного типа.
Врожденная краснуха — это медленная вирусная инфекция, развивающаяся в результате внутриутробного трансплацентарного.
Проявления развитие катаракты, глухоты и пороков сердца. Внутриутробные пороки. Особая опасность - заражение в 1 триместре беременности. Тератогенное действие обусловлено торможением митотической активности клеток, ишемией плода, цитопатогенным действием вируса на клетки плода.
Иммунитет менее стоек, так как формирование его происходит в условиях незрелой иммунной системы плода.
Прогрессирующий краснушный панэнцефалит — медленная вирусная инфекция, характеризующаяся комплексом прогрессирующих нарушений двигательной и умственной функции ЦНС, и завершающаяся летальным исходом.
Микробиологическая диагностика. Выделение вируса из смывов со слизистой оболочки носа и зева, крови, мочи, реже — испражнений, а также внутренних органов погибших детей и на обнаружении антител в парных сыворотках и цереброспинальной жидкости при врожденной краснухе и прогрессирующем краснушном панэнцефалите.
Выделение вируса путем заражения чувствительных клеток. Индикацию вируса осуществляют на основании интерференции с цитопатогенными вирусами или по обнаружению ЦПД и в РГА. Идентификацию вируса осуществляют в РН, РТГА, РИФ и ИФА. (Серодиагностика)
Для обнаружения антител применяют РН, РСК, РТГА, ИФА. Диагностическое значение имеет четырехкратное и более увеличение титров антител в динамике заболевания, а также определение специфических IgM. Обнаружение антител у беременных. Если через 10—12 дней после общения беременной с источником инфекции у женщины регистрируется нарастание титров антигемагглютининов в парных сыворотках, а после 20-го дня определяются IgM, то это подтверждает первичное инфицирование и необходимость решения вопроса о прерывании беременности. Обнаружение у новорожденных специфических IgM свидетельствует о перенесенной внутриутробной инфекции.
Специфическое лечение и профилактика. Лечение симптоматическое. Специфического лечения нет.
Профилактика: защита женщин детородного возраста от внутриутробного инфицирования плода, вакцинация против краснухи в возрасте 12 месяцев, ревакцинации детей в 6 лет и иммунизация девочек в 13 лет. Применяют живые и убитые вакцины. Живая вакцина, изготовленная на основе аттенуированныых штаммов вируса. Для проведения вакцинации используют как ассоциированные вакцины (паротитно-коревая-краснушная вакцина, паротитно-краснушная вакцина), так и моновакцины.
108. Вирус кори. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилактика.
Корь — острая инфекционная болезнь, характеризующаяся лихорадкой, катаральным воспалением слизистых оболочек верхних дыхательных путей и глаз, а также пятнисто-папулезной сыпью на коже.
Таксономия. РНК-содержащий вирус. Семейства Paramyxoviridae . Род Morbillivirus .
Структура и антигенные свойства. Вирион окружён оболочкой с гликопротеиновыми шипами. Под оболочкой находится спиральный нуклеокапсид. Геном вируса — однонитевая, нефрагменти-рованная минус РНК. Имеются следующие основные белки: NP — нуклеокапсидный; М — матриксный, а также поверхностные гли-козилированные белки липопротеиновой оболочки — гемагглютинин (Н) и белок слияния (F), гемолизин. Вирус обладает гемагглютинирующей и гемолитической активностью. Нейраминидаза отсутствует. Имеет общие антигены с вирусом чумы собак и крупного рогатого скота.
Культивирование. Культивируют на первично-трипсинизированных культурах клеток почек обезьян и человека, перевиваемых культурах клеток HeLa, Vero. Возбудитель размножается с образованием гигантских многоядерных клеток — симпластов; появляются цитоплазматические и внутриядерные включения. Белок F вызывает слияние клеток.
Резистентность. В окружающей среде нестоек, при комнатной температуре инактивируется через 3-4 ч. Быстро гибнет от солнечного света, УФ-лучей. Чувствителен к детергентам, дезинфектантам.
Восприимчивость животных. Корь воспроизводится только на обезьянах, остальные животные маловосприимчивы.
Эпидемиология. Корь — антропонозная инфекция, распространена повсеместно. Восприимчивость человека к вирусу кори чрезвычайно высока. Болеют люди разного возраста, но чаще дети 4—5 лет.
Источник инфекции — больной человек.
Основной путь инфицирования — воздушно-капельный, реже — контактный. Наибольшая заражаемость происходит в продромальном периоде и в 1-й день появления сыпи. Через 5 дней после появления сыпи больной не заразен.
Патогенез. Возбудитель проникает через слизистые оболочки верхних дыхательных путей и глаз, откуда попадает в подслизистую оболочку, лимфатические узлы. После репродукции он поступает в кровь (вирусемия) и поражает эндотелий кровеносных капилляров, обуславливая тем самым появление сыпи. Развиваются отек и некротические изменения тканей.
Клиника. Инкубационный период 8-15 дней. Вначале отмечаются острые респираторные проявления (ринит, фарингит, конъюнктивит, фотофобия, температура тела 39С). Затем, на 3—4-й день, на слизистых оболочках и коже появляется пятнисто-папулезная сыпь, распространяющаяся сверху вниз: сначала на лице, затем на туловище и конечностях. За сутки до появления сыпи на слизистой оболочке щек появляются мелкие пятна, окруженные красным ореолом. Заболевание длится 7—9 дней, сыпь исчезает, не оставляя следов.
Возбудитель вызывает аллергию, подавляет активность Т-лимфоцитов и иммунные реакции, что способствует появлению осложнений в виде пневмоний, воспаления среднего уха и др. Редко развиваются энцефалит и ПСПЭ.
Иммунитет. После перенесенной кори развивается гуморальный стойкий пожизненный иммунитет. Повторные заболевания редки. Пассивный иммунитет, передаваемый плоду через плаценту в виде IgG, защищает новорожденного в течение 6 месяцев после рождения.
Микробиологическая диагностика. Исследуют смыв с носоглотки, соскобы с элементов сыпи, кровь, мочу. Вирус кори можно обнаружить в патологическом материале и в зараженных культурах клеток с помощью РИФ, РТГА и реакции нейтрализации. Характерно наличие многоядерных клеток и антигенов возбудителя в них. Для серологической диагностики применяют РСК, РТГА и реакцию нейтрализации.
Лечение. Симптоматическое.
Специфическая профилактика. Активную специфическую профилактику кори проводят подкожным введением детям первого года жизни или живой коревой вакцины из аттенуированных штаммов, или ассоциированной вакцины (против кори, паротита, краснухи). В очагах кори ослабленным детям вводят нормальный иммуноглобулин человека. Препарат эффективен при введении не позднее 7-го дня инкубационного периода.
I .ЭПИДЕМИОЛОГИЯ
Источники инфекции:
· больной человек
Пути передачи:
· воздушно-капельный
· контактный
Факторы передачи:
· слюна, слизистые выделения, моча
· игрушки инфицированного ребенка
Г.риска – дети от 5 до 10 лет
Контагиозность –1-2 суток до появления
первых симптомов, первые 5 суток заболевания.
II .БИОЛОГИЯ ВОЗБУДИТЕЛЯ
· сферическая либо неправильная форма
D 35-300 нм
· сложноустроенный
· сердцевина – спираль однонитевой РНК
· нуклеокапсид – внутренний и наружный
слой
· суперкапсид – бислой липидов с
гликопротеиновыми «шипами»
структуры образуют выступы
III .ФАКТОРЫ ПАТОГЕННОСТИ(АГ)
1. Нуклеопротеиновый антиген NP
VI .ЛАБОРАТОРНАЯ ДИАГНОСТИКА Материал: слюна, цереброспинальная жидкость, моча II .ВИРУСОЛОГИЯ -Куриный эмбрион, перевиваемые культуры клеток -ПЦР - РИФ III . СЕРОДИАГНОСТИКА - РТГА - РСК -ИФА -РН |
2. Поверхностные NH - и F - гликопротеин
3.V -антиген – инфекционной активности
4.S -антиген – связанный
ПРОФИЛАКТИКА Неспецифическая · карантинные мероприятия Специфическая · живая паротитная аттенуированная вакцина, ассоциированные вакцины · специфический γ-глобулин ЛЕЧЕНИЕ/ПРОФИЛАКТИКА Симптоматическое лечение |
IV .ПАТОГЕНЕЗ Воротами инфекции служит слизистая оболочка верхних дыхательных путей. ПЕРВИЧНАЯ РЕПРОДУКЦИЯ – эпителиальные клетки носоглотки àвирусемияàфиксация на клетках яичках, яичниках, поджелудочной и щитовидной железе, мозга 2. Другой вариант à проникновение вируса в клетки эпителия ушных желез по стеновому протокуà вирусемияàадсорбция и проникновение вируса во внутренние органыàразличные формы осложнений |
ИММУНИТЕТ · стойкий · пожизненный · гуморальный |
110. Герпес-инфекция: таксономия, характеристика возбудителей. Лабораторная диагностика. Специфическая профилактика и лечение.
ВПГ вызывает герпетическую инфекцию, или простой герпес, характеризующийся везикулезными высыпаниями на коже, слизистых оболочках, поражением ЦНС и внутренних органов, а также пожизненным носительством (персистенцией) и рецидивами болезни.
Таксономия. Семейство Herpesviridae . Род Simplexvirus .
Структура. Геном ВПГ кодирует около 80 белков, необходимых для репродукции вируса и взаимодействия последнего с клетками организма и иммунным ответом. ВПГ кодирует 11 гликопротеинов, являющихся прикрепительными белками (gB, gC, gD, gH), белками слияния (gB), структурными белками, иммунными белками «уклонения» (gC, gE, gl).
Вирус вызывает литические инфекции фибробластов, эпителиальных клеток и латентные инфекции нейронов.
Культивирование. Для культивирования вируса применяют куриный эмбрион (на оболочке образуются мелкие плотные бляшки) и культуру клеток, на которой он вызывает цитопатический эффект в виде появления гигантских многоядерных клеток с внутриядерными включениями.
Антигенная структура. Вирус содержит ряд антигенов, связанных как с внутренними белками, так и с гликопротеидами наружной оболочки. Последние являются основными иммуногенами, индуцирущими выработку антител и клеточный иммунитет. Существует два серотипа: ВПГ 1 типа и ВПГ 2 типа.
Резистентность. Вирус нестоек, чувствителен к солнечным и УФ-лучам.
Эпидемиология. Источник инфекции — больной.
ВПГ-1 и ВПГ-2 передаются преимущественно контактным путем (с везикулярной жидкостью, со слюной, половых контактах), через предметы обихода, реже — воздушно-капельным путем, через плаценту, при рождении ребенка.
Оба типа вирусов могут вызывать оральный и генитальный герпес. ВПГ-1 чаще поражает слизистые оболочки ротовой полости и глотки, вызывает энцефалиты, а ВПГ-2 — гениталии (генитальный герпес).
Патогенез. Различают первичный и рецидивирующий простой герпес. Чаще вирус вызывает бессимптомную или латентную инфекцию.
Первичная инфекция. Везикула —проявление простого герпеса с дегенерацией эпителиальных клеток. Основу везикулы составляют многоядерные клетки. Пораженные ядра клеток содержат эозинофильные включения. Верхушка везикулы через некоторое время вскрывается, и формируется язвочка, которая вскоре покрывается струпом с образованием корочки с последующим заживлением.
Минуя входные ворота эпителия, вирусы проходят через чувствительные нервные окончания с дальнейшим передвижением нуклеокапсидов вдоль аксона к телу нейрона в чувствительных ганглиях. Репродукция вируса в нейроне заканчивается его гибелью. Некоторые вирусы герпеса, достигая ганглионарных клеток, способны приводить к развитию латентной инфекции, при которой нейроны не гибнут, но содержат в себе вирусный геном. Большинство людей (70-90 %) являются пожизненными носителями вируса, который сохраняется в ганглиях, вызывая в нейронах латентную персистирующую инфекцию.
Латентная инфекция чувствительных нейронов является характерной особенностью нейротропных герпесвирусов ВПГ. В латентно инфицированных нейронах около 1 % клеток в пораженном ганглии несет вирусный геном.
Клиника. Инкубационный период 2—12 дней. Болезнь начинается с возникновения на пораженных участках зуда, появления отека и пузырьков, заполненных жидкостью. ВПГ поражает кожу (везикулы, экзема), слизистые оболочки рта, глотки (стоматит) и кишечника, печень (гепатиты), глаза (кератит) и ЦНС (энцефалит). Рецидивирующий герпес обусловлен реактивацией вируса, сохранившегося в ганглиях. Он характеризуется повторными высыпаниями и поражением органов и тканей.
Генитальная инфекция является результатом аутоинокуляции из других пораженных участков тела; но наиболее часто встречающийся путь заражения — половой. Поражение проявляется в образовании везикулы, которая довольно быстро изъязвляется.
Вирус простого герпеса проникает во время прохождения новорожденного через родовые пути матери, вызывая неонаталъный герпес. Неонатальный герпес обнаруживается на 6-й день после родов. Вирус диссеминирует во внутренние органы с развитием генерализованного сепсиса.
Иммунитет. Основной иммунитет— клеточный. Развивается ГЗТ. NK-клетки играют важную роль в ранней противомикробной защите. Организм пораженного реагирует на гликопротеины вируса, продуцируя цитотоксические Т-лимфоциты, а также Т-хелперы, активирующие В-лимфоциты с последующей продукцией специфических антител.
Гликопротеины вызывают образование вируснейтрализующих антител. Вирус - нейтрализующие антитела подавляют межклеточное распространение вирусов.
Микробиологическая диагностика. Используют содержимое герпетических везикул, слюну, соскобы с роговой оболочки глаз, кровь, спинномозговую жидкость. В окрашенных мазках наблюдают гигантские многоядерные клетки, клетки с увеличенной цитоплазмой и внутриядерными включениями .
Для выделения вируса исследуемым материалом заражают клетки HeLa, Нер-2, человеческие эмбриональные фибробласты.
Рост в культуре клеток проявляется округлением клеток с последующим прогрессирующим поражением всей культуры клеток. Заражают также куриные эмбрионы, у которых после внутримозгового заражения развивается энцефалит. Выделенный вирус идентифицируют в РИФ и ИФА с использованием моноклональных антител.
Серодиагностику проводят с помощью РСК, РИФ, ИФА и реакции нейтрализации по нарастанию титра антител больного. ИБ также способен выявлять типоспецифические антитела.
При экспресс-диагностике в мазках-отпечатках из высыпаний, окрашенных по Романовскому-Гимзе, выявляются гигантские многоядерные клетки с внутриядерными включениями. Для идентификации вируса используют также амплификацию генов вирусной ДНК в реакции ПЦР.
Лечение. Для лечения применяют препараты интерферона, индукторы интерферона и противовирусные химиотерапевтические препараты (ацикловир, видарабин).
Профилактика. Специфическая профилактика рецидивирующего герпеса осуществляется в период ремиссии многократным введением инактивированной культуральной герпетической вакцины.
111. Возбудитель натуральной оспы. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилактика оспы на современном этапе
Таксономия. Вирус натуральной оспы — ДНК-содержащий, семейство Poxviridae , род Orthopoxvirus .
Морфология и антигенная структура . Вирионы поксвирусов имеют кирпичеобразную или овоидную форму. Вирус натуральной оспы — один из самых крупных вирусов, обнаружен в световом микроскопе. Вирионы видны при специальных методах окраски в виде так называемых элементарных телец Пашена (окраска серебрением по Морозову). Поверхность вириона состоит из нитевидных, овоидных элементов. Оболочка и наружная мембрана вириона заключают сердцевину (ДНК и белки) и мембрану сердцевины. Геном вириона — двунитевая линейная ДНК с ковалентно замкнутыми концами. Вирусы имеют более 30 структурных белков. Антигены — нуклеопротеиновый, растворимые и гемагглютинин; имеются общие антигены с вирусом вакцины.
Культивирование. Вирус размножается: в куриных эмбрионах с образованием белых бляшек на хорион-аллантоисной оболочке; в культуре клеток, в цитоплазме которых формируются характерные околоядерные включения.
Резистентность. Вирусы устойчивы к высушиванию и низким температурам, нечувствительны к эфиру. Моментально погибают при 100С, а при 60С — через 15 мин.
Эпидемиология. Особо опасная конвенционная (карантинная) инфекция. Источником инфекции является больной человек, который заразен с последних дней инкубационного периода и до отпадения корок высыпаний. Инфицирование происходит воздушно-капельным, воздушно-пылевым, а также контактно-бытовым путями при соприкосновении с вещами больного, загрязненными слизью, гноем, калом и мочой, содержащими вирус.
Патогенез. Вирус проникает через слизистые оболочки верхних дыхательных путей, реже — через кожу и после размножения в регионарных лимфатических узлах попадает в кровь. Из крови возбудитель заносится в кожу и лимфоидные ткани, в которых происходит размножение вирусов, формируются очаги поражения в коже, слизистых оболочках и паренхиматозных органах. Характерно образование папулезных высыпаний.
Клиника. Инкубационный период 7—17 дней. Заболевание проявляется высокой температурой тела, рвотой, головной и поясничной болями, появлением сыпи. Первоначально сыпь имеет вид розовых пятен, которые затем переходят сначала в узелки — папулы, а затем — в пузырьки (везикулы) и пустулы , подсыхающие и превращающиеся в корки.
Различают несколько форм оспы: тяжелую (пустулезно-геморрагическая); среднетяжелую; легкую (оспа без сыпи, оспа без повышения температуры тела).
Иммунитет. После перенесенной болезни формируется стойкий пожизненный иммунитет, обусловленный появлением вируснейтрализующих антител, интерферонов и активацией факторов клеточного иммунитета.
Микробиологическая диагностика. Исследуют содержимое элементов сыпи, отделяемое носоглотки, кровь, пораженные органы и ткани. Вирус выявляют при электронной микроскопии, в РИФ, РП, по образованию телец Гварниери. Выделяют вирус путем заражения куриных эмбрионов и культур клеток с последующей идентификацией в реакции нейтрализации (на куриных эмбрионах), РСК, РТГА. Серологическую диагностику проводят в РТГА, РСК, РИГА, реакции нейтрализации.
Лечение. Симптоматическое; индукторами интерферона и противовирусными препаратами.
Профилактика. Прочный иммунитет создает живая оспенная вакцина. Ее готовят из соскобов сыпи телят или при культивировании вируса вакцины (осповакцины) на куриных эмбрионах. Вакцину вводят накожно. Разработана оральная таблетированная вакцина, менее реактогенная.
112. Возбудители гепатитов В, С, D. Таксономия. Характеристика. Носительство. Лабораторная диагностика. Специфическая профилактика.
Вирус гепатита В - семейство Hepadnaviridae род Orthohepadnavirus.
Морфология: ДНК-содержаший вирус сферической формы. Состоит из сердцевины, состоящей из 180 белковых частиц, составляющих сердцевинный НВс-антиген и липидсодержащей оболочки, содержащей поверхностный HBs-антиген. Внутри сердцевины находятся ДНК, фермент ДНК-полимераза, обладающая ревертазной активностью, и концевой белок НВе-антиген.
Геном представлен двунитевой ДНК кольцевой формы.
Культуральные свойства . Не культивируется на куриных эмбрионах, не обладает гемолитической и гемагглютинирующей активностью. ВГВ культивируется только в культуре клеток.
Резистентность . Высокая к факторам окружающей среды и дезинфицирующим веществам. Вирус устойчив к длительному воздействию кислой среды, УФ-излучению, действию спирта, фенола.
Антигенная структура . Сложная. В суперкапсиде вируса находится HBs-антиген, который локализован в гидрофильном слое на поверхности вириона. В формировании HBs-антигена участвуют 3 полипептида в гликозилированной форме:preSl — большой полипептид; preS2 — средний полипептид; S — малый полипептид.
Эпидемиология: Развитие инфекционного процесса при попадании в кровь. Заражение происходит при парентеральных манипуляциях (инъекциях, хирургических вмешательствах), переливании крови.
Патогенез и клиника заболевания. Инкубационный период 3—6 месяцев. Инфекционный процесс наступает после проникновения вируса в кровь. ВГВ из крови эндоцитозом проникает в гепатоцит. После проникновения вируса происходит достраивание плюс-нити ДНК ДНК-полимеразой до полноценной структуры. Клиническая картина характеризуется симптомами поражения печени, в большинстве случаев сопровождается развитием желтухи.
Иммунитет. Гуморальный иммунитет, представленный антителами к HBs-антигену, защищает гепатоциты от вируса, элиминируя его из крови.
Клеточный иммунитет освобождает организм от инфицированных гепатоцитов благодаря цитолитической функции Т-киллеров. Переход острой формы в хроническую обеспечивается нарушением Т-клеточного иммунитета.
Микробиологическая диагностика. Используют серологический метод и ПЦР. Методами ИФА и РНГА в крови определяют маркеры гепатита В: антигены и антитела. ПЦР определяют наличие вирусной ДНК в крови и биоптатах печени. Для острого гепатита характерно обнаружение HBs антигена, НВе антигена и анти-HBc-IgM антитела.
Лечение. Использование интерферона, интерфероногенов: виферона, амиксина, ингибитора ДНК-полимеразы, препарата аденинрибонозида.
Профилактика. Исключение попадания вируса при парентеральных манипуляциях и переливаниях крови (применением одноразовых шприцев, проверкой на гепатит В по наличию HBs-антигена в крови доноров крови).
Специфическая профилактика осуществляется вакцинацией рекомбинантной генно-инженерной вакциной, содержащей HBs-антиген. Вакцинации подлежат все новорожденные в первые 24 часа жизни. Длительность поствакцинального иммунитета — не менее 7 лет.
Вирус гепатита С относится к семейству Flaviviridae роду Hepacivirus .
Морфология. Сложноорганизованный РНК-содержащим вирус сферической формы. Геном представлен одной линейной «+» цепью РНК, обладает большой вариабельностью.
Антигенная структура. Вирус обладает сложной антигенной структурой. Антигенами являются:
1. Гликопротеины оболочки
2. Сердцевинный антиген НСс-антиген
3. Неструктурные белки.
Культуральные свойства . ВГС не культивируется на куриных эмбрионах, не обладает гемолитической и гемагглютинирующей активностью. Резистентность. чувствителен к эфиру, УФ-лучам, нагреванию до 50С.
Эпидемиология. Заражение ВГС аналогично заражению ВГВ. Наиболее часто ВГС передается при переливаниях крови, трансплацентарно, половым путем.
Клиника: Часто встречаются безжелтушные формы, течение инфекции в острой форме, в 50 % случаев процесс переходит в хроническое течение с развитием цирроза и первичного рака печени.
Микробиологическая диагностика: Используются ПЦР и серологическое исследование. Подтверждением активного инфекционного процесса является обнаружение в крои вирусной РНК ПЦР. Серологическое исследование направлено на определение антител к NS3 методом ИФА.
Профилактика и лечение. Для профилактики – тоже, что и при гепатите В. Для лечения применяют интерферон и рибовирин. Специфическая профилактика – нет.
Вирус гепатита D - дефектный вирус, не имеющий собственной оболочки. Вирион имеет сферическую форму, который состоит из однонитчатой РНК и сердцевинного HDc-антигена. Эти белки регулируют синтез генома вируса: один белок стимулирует синтез генома, другой — тормозит. Различают три генотипа вируса. Все генотипы относятся к одному серотипу.
Резервуаром BFD в природе являются носители ВГВ. Заражение BFD аналогично инфицированию ВГВ.
Микробиологическая диагностика осуществляется серологическим методом путем определения антител к BFD методом ИФА.
Профилактика: все те мероприятия, которые используют для профилактики гепатита В. Для лечения используют препараты интерферона. Вакцина против гепатита В защищает и от гепатита D.
Медицинская микробиология. Предмет, задачи, методы, связь с другими науками. Значение медицинской микробиологии в практической деятельности врача.
Микроорганизмы являются возбудителями инфекционных болезней, которые часто встречаются в практике врача. Для того чтобы правильно поставить диагноз инфекционного заболевания, необходимо хорошо знать морфологию микробов, их основные формы, уметь различать их под микроскопом. Каждый врач должен владеть методом микроскопии, для чего необходимо знать устройство микроскопа и правила работы с ним.
Медецинская микробиология изучает патогенные и условно патогенные для человека микроорганизмы, их экологию и распространение, методы их выявления и индефикации, а так же вопросы эпидемиалогии, специфической терапии, и профилактики вызываемых ими забовеваний.
МИКРОБИОЛОГИЯ (греч.mikros — малый, лат.bios — жизнь) — наука, предметом изучения которой являются микроскопические существа, названные микроорганизмами, или микробами, их биологические признаки, систематика, экология, взаимоотношения с другими организмами, населяющими нашу планету, - животными, растениями и человеком.
МИКРОБИОЛОГИЯ — наука, которая изучает микробы во всем многообразии их отношений с организмом человека.
В процессе развития микробиологии были разработаны оригинальные методы исследования, многие заимствованы из других дисциплин — биофизики, биохимии, генетики, цитологии и т.д.
За всю историю своего развития перед микробиологией так же, как и другими естественными науками, стояли определенные цели и задачи, успешное развитие которых способствовало научному и общественному прогрессу всего человечества. Это в свою очередь стимулировало развитие специализированных РАЗДЕЛОВ микробиологии.
Так сформировались общая, техническая, с\х, ветеринарная, медицинская, санитарная, морская, космическая микробиология.
ОБЩАЯ микробиология изучает наиболее общие закономерности, свойственные каждой группе перечисленных микроорганизмов: структуру, метаболизм, генетику, экологию и т.д.
Основной задачей ТЕХНИЧЕСКОЙ (промышленной) микробиологии является разработка биотехнологии синтеза микроорганизмами биологически активных веществ: белков, витаминов, ферметов, спиртов, органических кислот, антибиотиков и др.
СЕЛЬСКО ХОЗЯЙСТВЕННАЯ микробиология занимается изучением микроорганизмов, которые участвуют в круговороте веществ, используются для изготовления удобрений, вызывают заболевания растений, и другими проблемами.
ВЕТЕРИНАРНАЯ микробиоллгия изучает возбудителей заболеваний животных, разрабатывает методы их биологической диагностики, спецйифической профилактики и этиотропного лечения, направленного на уничтожение микробов-возбудителей в организме больного животного.
Предметом изучения МЕДИЦИНСКОЙ микробиологии являются болезнетворные (патогенные) и условно-патогенные для человека микроорганизмы, а также разработка методов микробиологической диагностики, специфической профилактики и этиотропного лечения вызываемых ими инфекционных заболеваний.
Однако с медицинской микробиологией сформировалась иммунология, которая занимается изучением специфических механизмов защиты организмов людей и животных от болезнетворных микроорганизмов и другими проблемами.
Предметом изучения САНИТАРНОЙ микробиологии, тесно связанной с медицинской и ветеринарной микрбиологией, является санитарно-микробиологическое состояние объектов окружающей среды, пищевых продуктов и напитков.
2. Основные этапы развития микробиологии и иммунологии. Работы Л.Пастера, Р.Коха и их значение для развития микробиологии и иммунологии. Роль отечественных ученых (Н.Ф. Гамалея, П.Ф. Здродовский, Д.И. Ивановский, А.А. Смородинцев, М.П. Чумаков, З.В. Ермольева, В.М. Жданов и др.) в развитии микробиологии и вирусологии.Историю развития микробиологии можно разделить на пять этапов: эвристический, морфологический, физиологический, иммунологический и молекулярно-генетический.
Пастер сделал ряд выдающихся открытий. За короткий период с 1857 по 1885 г. он:
1. доказал, что брожение (молочнокислое, спиртовое, уксуснокислое) не является химическим процессом, а его вызывают микроорганизмы;
2. опроверг теорию самозарождения;
3. открыл явление анаэробиоза, т.е. возможность жизни микроорганизмов в отсутствие кислорода;
4. заложил основы дезинфекции, асептики и антисептики;
5. открыл способ предохранения от инфекционных болезней с помощью вакцинации.
Многие открытия Л. Пастера принесли человечеству огромную практическую пользу. Путем прогревания (пастеризации) были побеждены болезни пива и вина, молочнокислых продуктов, вызываемые микроорганизмами; для предупреждения гнойных осложнений ран введена антисептика; на основе принципов Л. Пастера разработаны многие вакцины для борьбы с инфекционными болезнями.
Однако значение трудов Л. Пастера выходит далеко за рамки только этих практических достижений. Л. Пастер вывел микробиологию и иммунологию на принципиально новые позиции, показал роль микроорганизмов в жизни людей, экономике, промышленности, инфекционной патологии, заложил принципы, по которым развиваются микробиология и иммунология и в наше время.
Л. Пастер был, кроме того, выдающимся учителем и организатором науки.
Работы Л. Пастера по вакцинации открыли новый этап в развитии микробиологии, по праву получивший названиеиммунологического.
Принцип аттенуации (ослабления) микроорганизмов с помощью пассажей через восприимчивое животное или при выдерживании микроорганизмов в неблагоприятных условиях (температура, высушивание) позволил Л. Пастеру получить вакцины против бешенства, сибирской язвы, куриной холеры; этот принцип до настоящего времени используется при приготовлении вакцин. Следовательно, Л. Пастер является основоположником научной иммунологии, хотя и до него был известен метод предупреждения оспы путем заражения людей коровьей оспой, разработанный английским врачом Э. Дженнером. Однако этот метод не был распространен на профилактику других болезней.
Роберт Кох. Физиологический период в развитии микробиологии связан также с именем немецкого ученого Роберта Коха, которому принадлежит разработка методов получения чистых культур бактерий, окраски бактерий при микроскопии, микрофотографии. Известна также сформулированная Р. Кохом триада Коха, которой до сих пор пользуются при установлении возбудителя болезни.
После работ Л. Пастера появилось множество исследований, в которых пытались объяснить причины и механизмы формирования иммунитета после вакцинации. Выдающуюся роль в этом сыграли работы И. И. Мечникова и П. Эрлиха.
Исследования И. И. Мечникова (1845—1916) показали, что большую роль в формировании иммунитета играют особые клетки — макро- и микрофаги. Эти клетки поглощают и переваривают чужеродные частицы, в том числе бактерии. Исследования И. И. Мечникова по фагоцитозу убедительно доказали, что, помимо гуморального, существует клеточный иммунитет. И. И. Мечников, ближайший помощник и последователь Л. Пастера, заслуженно считается одним из основоположников иммунологии. Его работы положили начало изучению иммунокомпетентных клеток как морфологической основы иммунной системы, ее единства и биологической сущности.
Д.И.Ивановский (1864— 1920) открыл вирусы — представителей царства vira. Один из основоположников вирусологии. Впервые открыл проходящий через бактериологические фильтры возбудитель табачной мозаики, названный впоследствии вирусом. Труды по фитопатологии и физиологии растений.
Гамалея - выдающийся микробиолог. Вместе с И. И. Мечниковым в 1886 году организовал в Одессе первую в России бактериологическую станцию. Автор многих работ по микробиологии и иммунологии (по профилактике холеры, чумы, оспы, паразитарных тифов, бешенства). Открыл бактериолизины, возбудители холеры птиц. Обосновал значение дезинсекции для ликвидации сыпного и возвратного тифов. В 1888 году ученый издал книгу "О прививках против сибирской язвы".Здровский (1890-1976 года), российский микробиолог, иммунолог и эпидемиолог, академик АМН. Исследования по проблемам тропических болезней, бруцеллеза и др. Под руководством Здродовского разработаны методы вакцинации против столбняка, дифтерии и др. инфекций. Автор книги "Учение о риккетсиях и риккетсиозах".
Смородинцев, российский вирусолог и иммунолог. Труды по этиологии и профилактике гриппа, энцефалитов и др. вирусных инфекций. Совместно с М. П.
Чумаковым разработал и внедрил вакцину против полиомиелита.
Ермольева, российский микробиолог. Получила первые отечественные образцы антибиотиков - пенициллина, стрептомицина и др.; интерферона.
Жданов, российский вирусолог. Труды по вирусным инфекциям, молекулярной биологии и классификации вирусов, эволюции инфекционных болезней.
Дата: 2019-02-25, просмотров: 393.