Поскольку на сетевом уровне не устанавливается соединение, то нет никаких гарантий того, что все пакеты будут доставлены в место назначения целыми и невредимыми или придут в том же порядке, в котором они были отправлены. Эту задачу - обеспечение надежности информационной связи между двумя конечными узлами - решает основной уровень стека TCP/IP, называемый также транспортным.
На этом уровне функционируют протокол управления передачей TCP и протокол дейтаграмм пользователя UDP. Протокол TCP обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования логических соединений. Этот протокол позволяет равноранговым объектам на компьютере-отправителе и на компьютере-получателе поддерживать обмен данными в дуплексном режиме. TCP позволяет без ошибок доставлять сформированный на одном из компьютеров поток байт в любой другой компьютер, входящий в составную сеть. TCP делит поток байт на части - сегменты и передает их нижележащему уровню межсетевого взаимодействия. После того, как эти сегменты будут доставлены в пункт назначения, протокол TCP снова соберет их в непрерывный поток байт.
Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и главный протокол уровня межсетевого взаимодействия IP, и выполняет только функции связующего звена (мультиплексора) между сетевым протоколом и многочисленными системами прикладного уровня, или пользовательскими процессами.
Уровень межсетевого взаимодействия
Стержнем всей архитектуры является уровень межсетевого взаимодействия, или сетевой уровень, который реализует концепцию передачи пакетов в режиме без установления соединений, то есть дейтаграммным способом. Именно этот уровень обеспечивает возможность перемещения пакетов по сети, используя тот маршрут, который в данный момент является наиболее рациональным. Этот уровень также называют уровнем Internet, указывая, тем самым, на основную его функцию - передачу данных через составную сеть.
Основным протоколом уровня (в терминологии модели OSI) в стеке TCP/IP является протокол IP. Этот протокол изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так глобальными связями. Поэтому протокол IP хорошо работает в сетях со множеством топологий, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Так как протокол IP является дейтаграммным протоколом, он не гарантирует доставку пакетов до узла назначения, но старается это сделать.
К уровню межсетевого взаимодействия относятся все протоколы, связанные с состоянием и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP и OSPF, а также протокол межсетевых управляющих сообщений ICMP. Последний протокол предназначен для обмена информацией об ошибках между маршрутизаторами сети и удаленным источником пакета. С помощью специальных пакетов ICMP сообщает о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т. п.
Уровень сетевых интерфейсов
Идеологическим отличием архитектуры стека TCP/IP от многоуровневой организации других стеков является интерпретация функций самого нижнего уровня – уровня сетевых интерфейсов. Протоколы этого уровня должны обеспечивать интеграцию в составную сеть других сетей, причем задача ставится так: сеть TCP/IP должна иметь средства включения в себя любой другой сети, какую бы внутреннюю технологию передачи данных эта сеть не использовала. Отсюда следует, что этот уровень нельзя определить раз и навсегда. Для каждой технологии, включаемой в составную сеть подсети, должны быть разработаны собственные интерфейсные средства. К таким интерфейсным средствам относится протокол инкапсуляции IP-пакетов межсетевого взаимодействия в кадры локальных технологий.
Уровень сетевых интерфейсов в протоколах TCP/IP не регламентируется, но он поддерживает все популярные стандарты физического и канального уровней: для локальных сетей – это Ethernet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet, 100VG-AnyLAN, для глобальных сетей – протоколы соединений «точка-точка» SLIP и PPP, протоколы территориальных сетей с коммутацией пакетов X.25, Frame Relay. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня.
Рассматривая многоуровневую архитектуру TCP/IP, можно выделить в ней, подобно архитектуре OSI (рис 28), уровни, функции которых зависят от конкретной технологической реализации сети, и уровни, функции которых ориентированы на работу только с приложениями и не зависят от технологий сети.
Протоколы прикладного уровня стека TCP/IP работают на компьютерах, выполняющих приложения пользователей. Даже полная смена сетевого оборудования в общем случае не должна влиять на работу приложений, если они получают доступ к сетевым возможностям через протоколы прикладного уровня.
Протоколы транспортного уровня уже более зависимы от сети, так как они реализуют интерфейс к уровням, непосредственно организующим передачу данных по сети. Однако подобно протоколам прикладного уровня, программные модули, реализующие протоколы транспортного уровня, устанавливаются только на конечных узлах.
Рис.28. Соответствие уровней стека TCP/IP уровням модели OSI
Протоколы двух нижних уровней являются сетезависимыми, программные модули протоколов межсетевого уровня и уровня сетевых интерфейсов устанавливаются как на конечных узла.
ВОПРОСЫ:
1.протокол, предназначенный для передачи файлов в компьютерных сетях.
1) *FTP. 2) IP. 3) UDP.
2 Уровень, который объединяет все службы, представляемые системой пользовательским приложениям.
1)*Прикладной уровень
2) транспортный уровень
3) Сетевой уровень
3. протокол прикладного уровня передачи данных (изначально – в виде гипертекстовых документов).
1)*HTTP.
2) UDP
3) FTP
4.Уровень сетевой модели OSI для доставки данных без ошибок, потерь и дублирования в той последовательности, как они были переданы.
1). Прикладной уровень
2) Сетевой уровень
3) *транспортный уровень
5.Уровень, который служит для образования единой транспортной системы, объединяющей несколько сетей, причем эти сети могут использовать совершенно различные принципы передачи сообщений между конечными узлами и обладать произвольной структурой связей.
1) Прикладной уровень.
2) Сеансовый уровень.
3) *Сетевой уровень.
6.Уровень,который обеспечивает управление диалогом: фиксирует, какая из сторон является активной в настоящий момент, предоставляет средства синхронизации.
1) Прикладной уровень.
2) Канальный.
3) *Сеансовый уровень.
7.Этот уровень определяет логическую топологию сети, правила получения доступа к среде передачи данных, решает вопросы, связанные с адресацией физических устройств в рамках логической сети и управлением передачей информации (синхронизация передачи и сервис соединений) между сетевыми устройствами.
1) Прикладной уровень.
2)Сеансовый уровень.
3)*Канальный уровень.
8.Двоичная запись IP адреса состоит из:
а) четырёх битного числа;
б) *четырёх байтного числа;
в) десятичных чисел.х составной сети, так и на маршрутизаторах.
Дата: 2019-02-25, просмотров: 287.