Биология как наука, ее достижения, методы познания живой природы. Роль биологии в формировании современной естественнонаучной картины мира
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Биология как наука, ее достижения, методы познания живой природы. Роль биологии в формировании современной естественнонаучной картины мира

Биология как наука

Биология (от греч. биос — жизнь, логос — слово, наука) — это комплекс наук о живой природе.

Предметом биологии являются все проявления жизни: строение и функции живых существ, их разнообразие, происхождение и развитие, а также взаимодействие с окружающей средой. Основная задача биологии как науки состоит в истолковании всех явлений живой природы на научной основе, учитывая при этом, что целостному организму присущи свойства, в корне отличающиеся от его составляющих.

Термин «биология» встречается в трудах немецких анатомов Т. Роозе (1779) и К. Ф. Бурдаха (1800), однако только в 1802 году он был впервые употреблен независимо друг от друга Ж. Б. Ламар ком и Г. Р. Тревиранусом для обозначения науки, изучающей живые организмы.

Биологические науки

В настоящее время в состав биологии включают целый ряд наук, которые можно систематизировать по таким критериям: по предмету и преобладающим методам исследования и по изучаемому уровню организации живой природы. По предмету исследования биологические науки делят на бактериологию, ботанику, вирусологию, зоологию, микологию.

Ботаника — это биологическая наука, комплексно изучающая растения и растительный покров Земли. Зоология — раздел биологии, наука о многообразии, строении, жизнедеятельности, распространении и взаимосвязи животных со средой обитания, их происхождении и развитии. Бактериология — биологическая наука, изучающая строение и жизнедеятельность бактерий, а также их роль в природе. Вирусология — биологическая наука, изучающая вирусы. Основным объектом микологии являются грибы, их строение и особенности жизнедеятельности. Лихенология — биологическая наука, изучающая лишайники. Бактериология, вирусология и некоторые аспекты микологии часто рассматриваются в составе микробиологии — раздела биологии, науке о микроорганизмах (бактериях, вирусах и микроскопических грибах). Систематика, или таксономия, — биологическая наука, которая описывает и классифицирует по группам все живые и вымершие существа.

В свою очередь, каждая из перечисленных биологических наук подразделяется на биохимию, морфологию, анатомию, физиологию, эмбриологию, генетику и систематику (растений, животных или микроорганизмов). Биохимия — это наука о химическом составе живой материи, химических процессах, происходящих в живых организмах и лежащих в основе их жизнедеятельности. Морфология — биологическая наука, изучающая форму и строение организмов, а также закономерности их развития. В широком смысле она включает в себя цитологию, анатомию, гистологию и эмбриологию. Различают морфологию животных и растений. Анатомия — это раздел биологии (точнее — морфологии), наука, изучающая внутреннее строение и форму отдельных органов, систем и организма в целом. Анатомия растений рассматривается в составе ботаники, анатомия животных — в составе зоологии, а анатомия человека является отдельной наукой. Физиология — биологическая наука, изучающая процессы жизнедеятельности растительных и животных организмов, их отдельных систем, органов, тканей и клеток. Существуют физиология растений, животных и человека. Эмбриология (биология развития) — раздел биологии, наука об индивидуальном развитии организма, в том числе развитии зародыша.

Объектом генетики являются закономерности наследственности и изменчивости. В настоящее время это одна из наиболее динамично развивающихся биологических наук.

По изучаемому уровню организации живой природы выделяют молекулярную биологию, цитологию, гистологию, органологию, биологию организмов и надорганизменных систем. Молекулярная биология является одним из наиболее молодых разделов биологии, наука, изучающая, в частности, организацию наследственной информации и биосинтез белка. Цитология, или клеточная биология, — биологическая наука, объектом изучения которой являются клетки как одноклеточных, так и многоклеточных организмов. Гистология — биологическая наука, раздел морфологии, объектом которой является строение тканей растений и животных. К сфере органологии относят морфологию, анатомию и физиологию различных органов и их систем.

Биология организмов включает все науки, предметом которых являются живые организмы, например, этологию — науку о поведении организмов.

Биология надорганизменных систем подразделяется на биогеографию и экологию. Распространение живых организмов изучает биогеография, тогда как экология — организацию и функционирование надорганизменных систем различных уровней: популяций, биоценозов (сообществ), биогеоценозов (экосистем) и биосферы.

По преобладающим методам исследования можно выделить описательную (например, морфологию), экспериментальную (например, физиологию) и теоретическую биологию.

Выявление и объяснение закономерностей строения, функционирования и развития живой природы на различных уровнях ее организации является задачей общей биологии. К ней относят биохимию, молекулярную биологию, цитологию, эмбриологию, генетику, экологию, эволюционное учение и антропологию. Эволюционное учение изучает причины, движущие силы, механизмы и общие закономерности эволюции живых организмов. Одним из его разделов является палеонтология — наука, предметом которой являются ископаемые останки живых организмов. Антропология — раздел общей биологии, наука о происхождении и развитии человека как биологического вида, а также разнообразии популяций современного человека и закономерностях их взаимодействия.

Прикладные аспекты биологии отнесены к сфере биотехнологии, селекции и других быстроразвивающихся наук. Биотехнологией называют биологическую науку, изучающую использование живых организмов и биологических процессов в производстве. Она широко применяется в пищевой (хлебопечение, сыроделие, пивоварение и др.) и фармацевтической промышленностях (получение антибиотиков, витаминов), для очистки вод и т. п. Селекция — наука о методах создания пород домашних животных, сортов культурных растений и штаммов микроорганизмов с нужными человеку свойствами. Под селекцией понимают и сам процесс изменения живых организмов, осуществляемый человеком для своих потребностей.

Прогресс биологии тесно связан с успехами других естественных и точных наук, таких как физика, химия, математика, информатика и др. Например, микроскопирование, ультразвуковые исследования (УЗИ), томография и другие методы биологии основываются на физических закономерностях, а изучение структуры биологических молекул и процессов, происходящих в живых системах, было бы невозможным без применения химических и физических методов. Применение математических методов позволяет, с одной стороны, выявить наличие закономерной связи между объектами или явлениями, подтвердить достоверность полученных результатов, а с другой — смоделировать явление или процесс. В последнее время все большее значение в биологии приобретают компьютерные методы, например моделирование. На стыке биологии и других наук возник целый ряд новых наук, таких как биофизика, биохимия, бионика и др.

Достижения биологии

Наиболее важными событиями в области биологии, повлиявшими на весь ход ее дальнейшего развития, являются: установление молекулярной структуры ДНК и ее роли в передаче информации в живой материи (Ф. Крик, Дж. Уотсон, М. Уилкинс); расшифровка генетического кода (Р. Холли, Х. Г. Корана, М. Ниренберг); открытие структуры гена и генетической регуляции синтеза белков (А. М. Львов, Ф. Жакоб, Ж. Л. Моно и др.); формулировка клеточной теории (М. Шлейден, Т. Шванн, Р. Вирхов, К. Бэр); исследование закономерностей наследственности и изменчивости (Г. Мендель, Х. де Фриз, Т. Морган и др.); формулировка принципов современной систематики (К. Линней), эволюционной теории (Ч. Дарвин) и учения о биосфере (В. И. Вернадский).

Значимость открытий последних десятилетий еще предстоит оценить, однако наиболее крупными достижениями биологии были признаны: расшифровка генома человека и других организмов, определение механизмов контроля потока генетической информации в клетке и формирующемся организме, механизмов регуляции деления и гибели клеток, клонирование млекопитающих, а также открытие возбудителей «коровьего бешенства» (прионов).

Работы по программе «Геном человека», которые проводились одновременно в нескольких странах и были завершены в начале нынешнего века, привели нас к пониманию того, что у человека имеется около 25–30 тыс. генов, но информация с большей части нашей ДНК не считывается никогда, так как в ней содержится огромное количество участков и генов, кодирующих признаки, утратившие значение для человека (хвост, оволосение тела и др.). Кроме того, был расшифрован ряд генов, отвечающих за развитие наследственных заболеваний, а также генов-мишеней лекарственных препаратов. Однако практическое применение результатов, полученных в ходе реализации данной программы, откладывается до тех пор, пока не будут расшифрованы геномы значительного количества людей, и тогда станет понятно, в чем же все-таки их различие. Эти цели поставлены перед целым рядом ведущих лабораторий всего мира, работающих над реализацией программы «ENCODE».

Биологические исследования являются фундаментом медицины, фармации, широко используются в сельском и лесном хозяйстве, пищевой промышленности и других отраслях человеческой деятельности.

Хорошо известно, что только «зеленая революция» 1950-х годов позволила хотя бы частично решить проблему обеспечения быстро растущего населения Земли продуктами питания, а животноводство — кормами за счет внедрения новых сортов растений и прогрессивных технологий их выращивания. В связи с тем, что генетически запрограммированные свойства сельскохозяйственных культур уже почти исчерпаны, дальнейшее решение продовольственной проблемы связывают с широким введением в производство генетически модифицированных организмов.

Производство многих продуктов питания, таких как сыры, йогурты, колбасы, хлебобулочные изделия и др., также невозможно без использования бактерий и грибов, что является предметом биотехнологии.

Познание природы возбудителей, процессов течения многих заболеваний, механизмов иммунитета, закономерностей наследственности и изменчивости позволили существенно снизить смертность и даже полностью искоренить ряд болезней, таких, например, как черная оспа. С помощью новейших достижений биологической науки решается и проблема репродукции человека.

Значительная часть современных лекарственных препаратов производится на основе природного сырья, а также благодаря успехам генной инженерии, как, например, инсулин, столь необходимый больным сахарным диабетом, в основном синтезируется бактериями, которым перенесен соответствующий ген.

Не менее значимы биологические исследования для сохранения окружающей среды и разнообразия живых организмов, угроза исчезновения которых ставит под сомнение существование человечества.

Наибольшее значение среди достижений биологии имеет тот факт, что они лежат даже в основе построения нейронных сетей и генетического кода в компьютерных технологиях, а также широко используются в архитектуре и других отраслях. Вне всякого сомнения, наступивший XXI век является веком биологии.

Уровневая организация и эволюция. Основные уровни организации живой природы: клеточный, организменный, популяционно-видовой, биогеоценотический, биосферный. Биологические системы. Общие признаки биологических систем: клеточное строение, особенности химического состава, обмен веществ и превращения энергии, гомеостаз, раздражимость, движение, рост и развитие, воспроизведение, эволюция

Клеточный уровень

Хотя проявления некоторых свойств живого обусловлены уже взаимодействием биологических макромолекул (белков, нуклеиновых кислот, полисахаридов и др.), все же единицей строения, функций и развития живого является клетка, способная осуществлять и сопрягать процессы реализации и передачи наследственной информации с обменом веществ и превращения энергии, обеспечивая тем самым функционирование более высоких уровней организации. Элементарной единицей клеточного уровня организации является клетка, а элементарным явлением — реакции клеточного метаболизма.

Организменный уровень

Организм — это целостная система, способная к самостоятельному существованию. По количеству клеток, входящих в состав организмов, их делят на одноклеточные и многоклеточные. Клеточный уровень организации у одноклеточных организмов (амебы обыкновенной, эвглены зеленой и др.) совпадает с организменным. В истории Земли был период, когда все организмы были представлены только одноклеточными формами, но они обеспечивали функционирование как биогеоценозов, так и биосферы в целом. Большинство многоклеточных организмов представлено совокупностью тканей и органов, в свою очередь также имеющих клеточное строение. Органы и ткани приспособлены для выполнения определенных функций. Элементарной единицей данного уровня является особь в ее индивидуальном развитии, или онтогенезе, поэтому организменный уровень также называют онтогенетическим. Элементарным явлением данного уровня являются изменения организма в его индивидуальном развитии.

Биогеоценотический уровень

Биогеоценоз представляет собой исторически сложившееся сообщество популяций разных видов, взаимосвязанных между собой и окружающей средой обменом веществ и энергии.

Биогеоценозы являются элементарными системами, в которых осуществляется вещественно-энергетический круговорот, обусловленный жизнедеятельностью организмов. Сами биогеоценозы — это элементарные единицы данного уровня, тогда как элементарные явления — это потоки энергии и круговороты веществ в них. Биогеоценозы составляют биосферу и обусловливают все процессы, протекающие в ней.

Биосферный уровень

Биосфера — оболочка Земли, населенная живыми организмами и преобразуемая ими.

Биосфера является самым высоким уровнем организации жизни на планете. Эта оболочка охватывает нижнюю часть атмосферы, гидросферу и верхний слой литосферы. Биосфера, как и все другие биологические системы, динамична и активно преобразуется живыми существами. Она сама является элементарной единицей биосферного уровня, а в качестве элементарного явления рассматривают процессы круговорота веществ и энергии, происходящие при участии живых организмов.

Как уже было сказано выше, каждый из уровней организации живой материи вносит свою лепту в единый эволюционный процесс: в клетке не только воспроизводится заложенная наследственная информация, но и происходит ее изменение, что приводит к возникновению новых сочетаний признаков и свойств организма, в свою очередь подвергающихся действию естественного отбора на популяционно-видовом уровне и т. д.

Биологические системы

Биологические объекты различной степени сложности (клетки, организмы, популяции и виды, биогеоценозы и саму биосферу) рассматривают в настоящее время в качестве биологических систем.

Система — это единство структурных компонентов, взаимодействие которых порождает новые свойства по сравнению с их механической совокупностью. Так, организмы состоят из органов, органы образованы тканями, а ткани формируют клетки.

Характерными чертами биологических систем являются их целостность, уровневый принцип организации, о чем говорилось выше, и открытость. Целостность биологических систем в значительной степени достигается за счет саморегуляции, функционирующей по принципу обратной связи.

К открытым системам относят системы, между которыми и окружающей средой происходит обмен веществ, энергии и информации, например, растения в процессе фотосинтеза улавливают солнечный свет и поглощают воду и углекислый газ, выделяя кислород.

Общие признаки биологических систем: клеточное строение, особенности химического состава, обмен веществ и превращения энергии, гомеостаз, раздражимость, движение, рост и развитие, воспроизведение, эволюция

Биологические системы отличаются от тел неживой природы совокупностью признаков и свойств, среди которых основными являются клеточное строение, особенности химического состава, обмен веществ и превращения энергии, гомеостаз, раздражимость, движение, рост и развитие, воспроизведение и эволюция.

Элементарной структурно-функциональной единицей живого является клетка. Даже вирусы, относящиеся к неклеточным формам жизни, неспособны к самовоспроизведению вне клеток.

Различают два типа строения клеток: прокариотические и эукариотические. Прокариотические клетки не имеют сформированного ядра, их генетическая информация сосредоточена в цитоплазме. К прокариотам относят прежде всего бактерии. Генетическая информация в эукариотических клетках хранится в особой структуре — ядре. Эукариотами являются растения, животные и грибы. Если в одноклеточных организмах клетке присущи все проявления живого, то у многоклеточных происходит специализация клеток.

В живых организмах не встречается ни одного химического элемента, которого бы не было в неживой природе, однако их концентрации существенно различаются в первом и во втором случаях. Преобладают в живой природе такие элементы, как углерод, водород и кислород, которые входят в состав органических соединений, тогда как для неживой природы в основном характерны неорганические вещества. Важнейшими органическими соединениями являются нуклеиновые кислоты и белки, которые обеспечивают функции самовоспроизведения и самоподдержания, но ни одно из этих веществ не является носителем жизни, поскольку ни по отдельности, ни в группе они не способны к самовоспроизведению — для этого необходим целостный комплекс молекул и структур, которым и является клетка.

Все живые системы, в том числе клетки и организмы, являются открытыми системами. Однако, в отличие от неживой природы, где в основном происходит перенос веществ с одного места в другое или изменение их агрегатного состояния, живые существа способны к химическому превращению потребляемых веществ и использованию энергии. Обмен веществ и превращения энергии связаны с такими процессами, как питание, дыхание и выделение.

Под питанием обычно понимают поступление в организм, переваривание и усвоение им веществ, необходимых для пополнения энергетических запасов и построения тела организма. По способу питания все организмы делят на автотрофов и гетеротрофов.

Автотрофы — это организмы, которые способны сами синтезировать органические вещества из неорганических.

Гетеротрофы — это организмы, которые потребляют в пищу готовые органические вещества. Автотрофы делятся на фотоавтотрофов и хемоавтотрофов. Фотоавтотрофы используют для синтеза органических веществ энергию солнечного света. Процесс преобразования энергии света в энергию химических связей органических соединений называется фотосинтезом. К фотоавтотрофам относится подавляющее большинство растений и некоторые бактерии (например, цианобактерии). В целом фотосинтез не слишком продуктивный процесс, вследствие чего большинство растений вынуждено вести прикрепленный образ жизни. Хемоавтотрофы извлекают энергию для синтеза органических соединений из неорганических соединений. Этот процесс называется хемосинтезом. Типичными хемоавтотрофами являются некоторые бактерии, в том числе серобактерии и железобактерии.

Остальные организмы — животные, грибы и подавляющее большинство бактерий — относятся к гетеротрофам.

Дыханием называют процесс расщепления органических веществ до более простых, при котором выделяется энергия, необходимая для поддержания жизнедеятельности организмов.

Различают аэробное дыхание, требующее кислорода, и анаэробное, протекающее без участия кислорода. Большинство организмов является аэробами, хотя среди бактерий, грибов и животных встречаются и анаэробы. При кислородном дыхании сложные органические вещества могут расщепляться до воды и углекислого газа.

Под выделением обычно понимают выведение из организма конечных продуктов метаболизма и избытка различных веществ (воды, солей и др.), поступивших с пищей или образовавшихся в нем. Особенно интенсивно процессы выделения протекают у животных, тогда как растения чрезвычайно экономны.

Благодаря обмену веществ и энергии обеспечивается взаимосвязь организма с окружающей средой и поддерживается гомеостаз.

Гомеостаз — это способность биологических систем противостоять изменениям и поддерживать относительное постоянство химического состава, строения и свойств, а также обеспечивать постоянство функционирования в изменяющихся условиях окружающей среды. Приспособление же к изменяющимся условиям среды называется адаптацией.

Раздражимость — это универсальное свойство живого реагировать на внешние и внутренние воздействия, которое лежит в основе приспособления организма к условиям окружающей среды и их выживания. Реакция растений на изменения внешних условий заключается, например, в повороте листовых пластинок к свету, а у большинства животных она имеет более сложные формы, имеющие рефлекторный характер.

Движение — неотъемлемое свойство биологических систем. Оно проявляется не только в виде перемещения тел и их частей в пространстве, например, в ответ на раздражение, но и в процессе роста и развития.

Новые организмы, появляющиеся в результате репродукции, получают от родителей не готовые признаки, а определенные генетические программы, возможность развития тех или иных признаков. Эта наследственная информация реализуется во время индивидуального развития. Индивидуальное развитие выражается, как правило, в количественных и качественных изменениях организма. Количественные изменения организма называются ростом. Они проявляются, например, в виде увеличения массы и линейных размеров организма, что основано на воспроизведении молекул, клеток и других биологических структур.

Развитие организма — это появление качественных различий в структуре, усложнение функций и т. д., что базируется на дифференцировании клеток.

Рост организмов может продолжаться всю жизнь или заканчиваться на каком-то определенном ее этапе. В первом случае говорят о неограниченном, или открытом росте. Он характерен для растений и грибов. Во втором случае мы имеем дело с ограниченным, или закрытым ростом, присущим животным и бактериям.

Продолжительность существования отдельной клетки, организма, вида и других биологических систем ограничена во времени в основном из-за воздействия факторов окружающей среды, поэтому требуется постоянное воспроизведение этих систем. В основе воспроизведения клеток и организмов лежит процесс самоудвоения молекул ДНК. Размножение организмов обеспечивает существование вида, а размножение всех видов, населяющих Землю, обеспечивает существование биосферы.

Наследственностью называют передачу признаков родительских форм в ряду поколений.

Однако, если бы при воспроизведении признаки сохранялись, приспособление к меняющимся условиям окружающей среды было бы невозможным. В связи с этим появилось противоположное наследственности свойство — изменчивость.

Изменчивость — это возможность приобретения в течение жизни новых признаков и свойств, которое обеспечивает эволюцию и выживание наиболее приспособленных видов.

Эволюция — это необратимый процесс исторического развития живого.

Она базируется на прогрессивном размножении, наследственной изменчивости, борьбе за существование и естественном отборе. Действие этих факторов привело к огромному разнообразию форм жизни, приспособленных к различным условиям среды обитания. Прогрессивная эволюция прошла ряд ступеней: доклеточных форм, одноклеточных организмов, все усложняющихся многоклеточных вплоть до человека.

Генетика, ее задачи. Наследственность и изменчивость — свойства организмов. Методы генетики. Основные генетические понятия и символика. Хромосомная теория наследственности. Современные представления о гене и геноме

Генетика, ее задачи

Успехи естествознания и клеточной биологии в XVIII–XIX веках позволили ряду ученых высказать предположения о существовании неких наследственных факторов, определяющих, например, развитие наследственных болезней, однако эти предположения не были подкреплены соответствующими доказательствами. Даже сформулированная Х. де Фризом в 1889 году теория внутриклеточного пангенеза, которая предполагала существование в ядре клетки неких «пангенов », определяющих наследственные задатки организма, и выход в протоплазму только тех из них, которые определяют тип клетки, не смогла изменить ситуацию, как и теория «зародышевой плазмы» А. Вейсмана, согласно которой приобретенные в процессе онтогенеза признаки не наследуются.

Лишь труды чешского исследователя Г. Менделя (1822–1884) стали основополагающим камнем современной генетики. Однако, несмотря на то, что его труды цитировались в научных изданиях, современники не обратили на них внимания. И лишь повторное открытие закономерностей независимого наследования сразу тремя учеными — Э. Чермаком, К. Корренсом и Х. де Фризом — вынудило научную общественность обратиться к истокам генетики.

Генетика — это наука, изучающая закономерности наследственности и изменчивости и методы управления ими.

Задачами генетики на современном этапе являются исследование качественных и количественных характеристик наследственного материала, анализ структуры и функционирования генотипа, расшифровка тонкой структуры гена и методов регуляции генной активности, поиск генов, вызывающих развитие наследственных болезней человека и методов их «исправления», создание нового поколения лекарственных препаратов по типу ДНК-вакцин, конструирование с помощью средств генной и клеточной инженерии организмов с новыми свойствами, которые могли бы производить необходимые человеку лекарственные препараты и продукты питания, а также полная расшифровка генома человека.

Методы генетики

1. Гибридологический метод, или метод скрещиваний, заключается в подборе родительских особей и анализе потомства. При этом о генотипе организма судят по фенотипическим проявлениям генов у потомков, полученных при определенной схеме скрещивания. Это старейший информативный метод генетики, который наиболее полно впервые применил Г. Мендель в сочетании со статистическим методом. Данный метод неприменим в генетике человека по этическим соображениям.

2. Цитогенетический метод основан на исследовании кариотипа: числа, формы и величины хромосом организма. Изучение этих особенностей позволяет выявить различные патологии развития.

3. Биохимический метод позволяет определять содержание различных веществ в организме, в особенности их избыток или недостаток, а также активность целого ряда ферментов.

4. Молекулярно-генетические методы направлены на выявление вариаций в структуре и расшифровку первичной последовательности нуклеотидов исследуемых участков ДНК. Они позволяют выявить гены наследственных болезней даже у эмбрионов, установить отцовство и т. д.

5. Популяционно-статистический метод позволяет определить генетический состав популяции, частоту определенных генов и генотипов, генетический груз, а также наметить перспективы развития популяции.

6. Метод гибридизации соматических клеток в культуре позволяет определить локализацию определенных генов в хромосомах при слиянии клеток различных организмов, например, мыши и хомяка, мыши и человека и т. д.

Задачи с решениями

Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны.

Обмен веществ — одно из основных свойств живых систем, он характеризуется тем, что происходит

  1. избирательное реагирование на внешние воздействия окружающей среды
  2. изменение интенсивности физиологических процессов и функций с различными периодами колебаний
  3. передача из поколения в поколение признаков и свойств
  4. поглощение необходимых веществ и выделение продуктов жизнедеятельности
  5. поддержание относительно постоянного физико-химического состава внутренней среды

Решение

Обмен веществ и энергии (метаболизм)– это основная функция организма. Под обменом веществ и энергии понимают совокупность процессов поступления питательных и биологически активных веществ в пищеварительный аппарат, превращения или освобождения их и всасывание продуктов превращения и освобождения веществ в кровь и лимфу, распределение, превращение и использование всосавшихся веществ в тканях органов, выделение конечных продуктов превращения и использования, вредных для организма. Обмен веществ представляет собой единство двух процессов: ассимиляции и диссимиляции. Ассимиляция – совокупность процессов, обеспечивающих образование в организме свойственных ему веществ из веществ, поступивших в организм из внешней среды. Диссимиляция – совокупность процессов ферментативного расщепления сложных веществ. Оба процесса взаимосвязаны и возможны только при наличии другого. Интенсивность одного процесса зависит от интенсивности другого. Обмены различных веществ в организме тесно взаимосвязаны и поддерживают постоянство физико-химического состава внутренней среды.

Ответ: 45

Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Процессы деления клеток изучают с помощью методов

  1. дифференциального центрифугирования
  2. культуры клеток
  3. микроскопии
  4. микрохирургии
  5. фото- и киносъёмки

Решение

Процессы деления клеток можно наблюдать под микроскопом, данный метод носит название микроскопия. Современные микроскопы оснащены фото и кинокамерой, поэтому процесс деления можно еще фотографировать и записывать.

Ответ: 35

 

Биология как наука, ее достижения, методы познания живой природы. Роль биологии в формировании современной естественнонаучной картины мира

Биология как наука

Биология (от греч. биос — жизнь, логос — слово, наука) — это комплекс наук о живой природе.

Предметом биологии являются все проявления жизни: строение и функции живых существ, их разнообразие, происхождение и развитие, а также взаимодействие с окружающей средой. Основная задача биологии как науки состоит в истолковании всех явлений живой природы на научной основе, учитывая при этом, что целостному организму присущи свойства, в корне отличающиеся от его составляющих.

Термин «биология» встречается в трудах немецких анатомов Т. Роозе (1779) и К. Ф. Бурдаха (1800), однако только в 1802 году он был впервые употреблен независимо друг от друга Ж. Б. Ламар ком и Г. Р. Тревиранусом для обозначения науки, изучающей живые организмы.

Биологические науки

В настоящее время в состав биологии включают целый ряд наук, которые можно систематизировать по таким критериям: по предмету и преобладающим методам исследования и по изучаемому уровню организации живой природы. По предмету исследования биологические науки делят на бактериологию, ботанику, вирусологию, зоологию, микологию.

Ботаника — это биологическая наука, комплексно изучающая растения и растительный покров Земли. Зоология — раздел биологии, наука о многообразии, строении, жизнедеятельности, распространении и взаимосвязи животных со средой обитания, их происхождении и развитии. Бактериология — биологическая наука, изучающая строение и жизнедеятельность бактерий, а также их роль в природе. Вирусология — биологическая наука, изучающая вирусы. Основным объектом микологии являются грибы, их строение и особенности жизнедеятельности. Лихенология — биологическая наука, изучающая лишайники. Бактериология, вирусология и некоторые аспекты микологии часто рассматриваются в составе микробиологии — раздела биологии, науке о микроорганизмах (бактериях, вирусах и микроскопических грибах). Систематика, или таксономия, — биологическая наука, которая описывает и классифицирует по группам все живые и вымершие существа.

В свою очередь, каждая из перечисленных биологических наук подразделяется на биохимию, морфологию, анатомию, физиологию, эмбриологию, генетику и систематику (растений, животных или микроорганизмов). Биохимия — это наука о химическом составе живой материи, химических процессах, происходящих в живых организмах и лежащих в основе их жизнедеятельности. Морфология — биологическая наука, изучающая форму и строение организмов, а также закономерности их развития. В широком смысле она включает в себя цитологию, анатомию, гистологию и эмбриологию. Различают морфологию животных и растений. Анатомия — это раздел биологии (точнее — морфологии), наука, изучающая внутреннее строение и форму отдельных органов, систем и организма в целом. Анатомия растений рассматривается в составе ботаники, анатомия животных — в составе зоологии, а анатомия человека является отдельной наукой. Физиология — биологическая наука, изучающая процессы жизнедеятельности растительных и животных организмов, их отдельных систем, органов, тканей и клеток. Существуют физиология растений, животных и человека. Эмбриология (биология развития) — раздел биологии, наука об индивидуальном развитии организма, в том числе развитии зародыша.

Объектом генетики являются закономерности наследственности и изменчивости. В настоящее время это одна из наиболее динамично развивающихся биологических наук.

По изучаемому уровню организации живой природы выделяют молекулярную биологию, цитологию, гистологию, органологию, биологию организмов и надорганизменных систем. Молекулярная биология является одним из наиболее молодых разделов биологии, наука, изучающая, в частности, организацию наследственной информации и биосинтез белка. Цитология, или клеточная биология, — биологическая наука, объектом изучения которой являются клетки как одноклеточных, так и многоклеточных организмов. Гистология — биологическая наука, раздел морфологии, объектом которой является строение тканей растений и животных. К сфере органологии относят морфологию, анатомию и физиологию различных органов и их систем.

Биология организмов включает все науки, предметом которых являются живые организмы, например, этологию — науку о поведении организмов.

Биология надорганизменных систем подразделяется на биогеографию и экологию. Распространение живых организмов изучает биогеография, тогда как экология — организацию и функционирование надорганизменных систем различных уровней: популяций, биоценозов (сообществ), биогеоценозов (экосистем) и биосферы.

По преобладающим методам исследования можно выделить описательную (например, морфологию), экспериментальную (например, физиологию) и теоретическую биологию.

Выявление и объяснение закономерностей строения, функционирования и развития живой природы на различных уровнях ее организации является задачей общей биологии. К ней относят биохимию, молекулярную биологию, цитологию, эмбриологию, генетику, экологию, эволюционное учение и антропологию. Эволюционное учение изучает причины, движущие силы, механизмы и общие закономерности эволюции живых организмов. Одним из его разделов является палеонтология — наука, предметом которой являются ископаемые останки живых организмов. Антропология — раздел общей биологии, наука о происхождении и развитии человека как биологического вида, а также разнообразии популяций современного человека и закономерностях их взаимодействия.

Прикладные аспекты биологии отнесены к сфере биотехнологии, селекции и других быстроразвивающихся наук. Биотехнологией называют биологическую науку, изучающую использование живых организмов и биологических процессов в производстве. Она широко применяется в пищевой (хлебопечение, сыроделие, пивоварение и др.) и фармацевтической промышленностях (получение антибиотиков, витаминов), для очистки вод и т. п. Селекция — наука о методах создания пород домашних животных, сортов культурных растений и штаммов микроорганизмов с нужными человеку свойствами. Под селекцией понимают и сам процесс изменения живых организмов, осуществляемый человеком для своих потребностей.

Прогресс биологии тесно связан с успехами других естественных и точных наук, таких как физика, химия, математика, информатика и др. Например, микроскопирование, ультразвуковые исследования (УЗИ), томография и другие методы биологии основываются на физических закономерностях, а изучение структуры биологических молекул и процессов, происходящих в живых системах, было бы невозможным без применения химических и физических методов. Применение математических методов позволяет, с одной стороны, выявить наличие закономерной связи между объектами или явлениями, подтвердить достоверность полученных результатов, а с другой — смоделировать явление или процесс. В последнее время все большее значение в биологии приобретают компьютерные методы, например моделирование. На стыке биологии и других наук возник целый ряд новых наук, таких как биофизика, биохимия, бионика и др.

Достижения биологии

Наиболее важными событиями в области биологии, повлиявшими на весь ход ее дальнейшего развития, являются: установление молекулярной структуры ДНК и ее роли в передаче информации в живой материи (Ф. Крик, Дж. Уотсон, М. Уилкинс); расшифровка генетического кода (Р. Холли, Х. Г. Корана, М. Ниренберг); открытие структуры гена и генетической регуляции синтеза белков (А. М. Львов, Ф. Жакоб, Ж. Л. Моно и др.); формулировка клеточной теории (М. Шлейден, Т. Шванн, Р. Вирхов, К. Бэр); исследование закономерностей наследственности и изменчивости (Г. Мендель, Х. де Фриз, Т. Морган и др.); формулировка принципов современной систематики (К. Линней), эволюционной теории (Ч. Дарвин) и учения о биосфере (В. И. Вернадский).

Значимость открытий последних десятилетий еще предстоит оценить, однако наиболее крупными достижениями биологии были признаны: расшифровка генома человека и других организмов, определение механизмов контроля потока генетической информации в клетке и формирующемся организме, механизмов регуляции деления и гибели клеток, клонирование млекопитающих, а также открытие возбудителей «коровьего бешенства» (прионов).

Работы по программе «Геном человека», которые проводились одновременно в нескольких странах и были завершены в начале нынешнего века, привели нас к пониманию того, что у человека имеется около 25–30 тыс. генов, но информация с большей части нашей ДНК не считывается никогда, так как в ней содержится огромное количество участков и генов, кодирующих признаки, утратившие значение для человека (хвост, оволосение тела и др.). Кроме того, был расшифрован ряд генов, отвечающих за развитие наследственных заболеваний, а также генов-мишеней лекарственных препаратов. Однако практическое применение результатов, полученных в ходе реализации данной программы, откладывается до тех пор, пока не будут расшифрованы геномы значительного количества людей, и тогда станет понятно, в чем же все-таки их различие. Эти цели поставлены перед целым рядом ведущих лабораторий всего мира, работающих над реализацией программы «ENCODE».

Биологические исследования являются фундаментом медицины, фармации, широко используются в сельском и лесном хозяйстве, пищевой промышленности и других отраслях человеческой деятельности.

Хорошо известно, что только «зеленая революция» 1950-х годов позволила хотя бы частично решить проблему обеспечения быстро растущего населения Земли продуктами питания, а животноводство — кормами за счет внедрения новых сортов растений и прогрессивных технологий их выращивания. В связи с тем, что генетически запрограммированные свойства сельскохозяйственных культур уже почти исчерпаны, дальнейшее решение продовольственной проблемы связывают с широким введением в производство генетически модифицированных организмов.

Производство многих продуктов питания, таких как сыры, йогурты, колбасы, хлебобулочные изделия и др., также невозможно без использования бактерий и грибов, что является предметом биотехнологии.

Познание природы возбудителей, процессов течения многих заболеваний, механизмов иммунитета, закономерностей наследственности и изменчивости позволили существенно снизить смертность и даже полностью искоренить ряд болезней, таких, например, как черная оспа. С помощью новейших достижений биологической науки решается и проблема репродукции человека.

Значительная часть современных лекарственных препаратов производится на основе природного сырья, а также благодаря успехам генной инженерии, как, например, инсулин, столь необходимый больным сахарным диабетом, в основном синтезируется бактериями, которым перенесен соответствующий ген.

Не менее значимы биологические исследования для сохранения окружающей среды и разнообразия живых организмов, угроза исчезновения которых ставит под сомнение существование человечества.

Наибольшее значение среди достижений биологии имеет тот факт, что они лежат даже в основе построения нейронных сетей и генетического кода в компьютерных технологиях, а также широко используются в архитектуре и других отраслях. Вне всякого сомнения, наступивший XXI век является веком биологии.

Дата: 2019-02-24, просмотров: 281.