В ряде случаев введение антигена в организм может индуцировать аномальную гипе-рергическую реакцию, которая носит черты патологического процесса и является прямой противоположностью иммунологической толерантности. Эта необычная форма реагирования, основу которой составляют естественные физиологические механизмы, получила название аллергия (от греч. alios — иной и ergon — действие). Изучает аллергию самостоятельная наука — аллергология. Соответственно антигены, вызывающие аллергические реакции, получили название аллергены.
Впервые понятие «аллергия» было введено в практику французским ученым К. Пирке (1906). Он понимал аллергию как измененную реакцию макроорганизма на повторное введение антигена и относил к ней как гипер-, так и гипореактивность.
Современное определение понимает аллергию как повышенную извращенную специфическую реакцию макроорганизма на повторный контакт организма с антигеном (аллергеном).
Для формировании аллергии необходима предварительная сенсибилизация макроорганизма к аллергену, или аллергизация. Ее можно вызвать очень малой, субиммунизирующей дозой антигена (например, введением морской свинке 0,000001 мл лошадиной сыворотки), которая получила название сенсибилизирующей. Повторное введение того же антигена через
определенный промежуток времени вызывает аллергическую реакцию. Дозу антигена, вызывающую собственно аллергическую реакцию, называют разрешающей.
В развитии аллергической реакции выделяют три стадии: иммунологическую, патохи-мическую и патофизиологическую. В течение иммунологической стадии в ответ на аллерген образуются антигеночувствительные клетки, специфические антитела и иммунные комплексы. Патохимическая стадия характеризуется образованием медиаторов воспаления и биологически активных аминов, которые играют основную роль в механизме аллергических реакций. В течение патофизиологичес кой стадии проявляется клиническая картина аллергической реакции. Как правило, клинические проявления аллергии полиморфны.
Первая классификация аллергий была предложена Р. Куком в 1947 г. В ее основу было положено время развития аллергической реакции. Былы выделены гиперчувствительность немедленного (ГНТ) и замедленного (ГЗТ) типа. Сравнение свойств ГНТ и ГЗТ представлено в табл. 11.2. К ГНТ были отнесены аллергические реакции, проявляющиеся уже через 20—30 мин после повторной встречи с аллергеном, тогда как реакции ГЗТ возникают через 6—8 ч и позже. Механизмы и клинические проявления ГНТ и ГЗТ различны. ГНТ связана с выработкой специфических антител (опосредована В-звеном иммунитета). При помощи специфических антител или клона ан-тигенореактивных В-лимфоцитов аллергиза-цию можно перенести от больного здоровому. Возможна специфическая десенсибилизация пациента, которая в ряде случаев дает стойкий эффект. ГЗТ опосредована клеточным звеном иммунитета. Перенос аллергизации от больного здоровому возможен только с клеточным пулом. Специфическая терапия, как правило, оказывается неэффективной.
ГНТ была описана в 1902—1905 гг. французскими учеными Ш. Рише и Ж. Портье и русским ученым Г. П. Сахаровым. Они показали, что ГНТ имеет стереотипное течение, которое может заканчиваться смертью. Она может проявляться в виде анафилаксии, атопичес-ких болезней, сывороточной болезни, феномена Артюса (см. разд. 12.4.3). Явление ГЗТ
было установлено Р. Кохом (1890). Этот тип аллергии может протекать в виде контактной аллергии, реакции на кожно-аллергическую пробу, замедленной аллергии к белкам.
Изучение молекулярных механизмов аллергии привело к созданию Джеллом и Кумбсом в 1968 г. новой классификации. В соответствии с ней различают четыре основных типа аллергии: анафилактический (I тип), цитотоксичес-кий (II тип), иммунокомплексный (III тип) и опосредованный клетками (IV тип). Первые три типа относятся к ГНТ, четвертый — к ГЗТ. Сравнительная характеристика механизмов указанных типов аллергий приведена в табл. 11.3, из которой видно, что ведущую роль в запуске ГНТ играют антитела (IgE, G и М), а ГЗТ — лимфоидно-макрофагальная реакция.
Аллергическая реакция I типа связана с биологическими эффектами IgE и G4, названных реагинами, которые обладают цито-фильностью — сродством к тучным клеткам и базофилам. Эти клетки несут на поверхности высокоаффинный FcR, связывающий IgE и G4 и использующий их как ко-рецепторный фактор специфического взаимодействия с эпитопом аллергена. Связывание аллергена с рецепторным комплексом вызывает деграну-ляцию базофила и тучной клетки — залповый выброс биологически активных соединений (гистамин, гепарин и др.), содержащихся в гранулах, в межклеточное пространство. Их действие практически мгновенно, но кратковременно, включает ряд органо-тканевых патофизиологических реакций, связанных с сокращением гладкой мускулатуры кишечника, бронхов, мочевого пузыря и активацией секреторных, эндотелиальных и некоторых других клеток. В результате развиваются бронхоспазм, вазодилатация, отек и прочие симптомы, характерные для анафилаксии. Вырабатываемые цитокины стимулируют клеточное звено иммунитета: образование Т2-хелпера и эозинофилогенез.
Наиболее ярко аллергическая реакция I типа проявляется в клинической картине анафилактического шока. Инъекция сыворотки крови больного с аллергией I типа здоровому лицу переносит ему специфический реагин и делает на определенное время сенсибилизированным. На этом феномене основан эф-
фект реакции Прауснитца—Кюстнера, ранее использовавшейся для диагностики аллергии: контакт тест-пациента с аллергеном вызывал у него анафилаксию.
Цитотоксические антитела (IgG, IgM), направленные против поверхностных структур (антигенов) соматических клеток макроорганизма, связываются с клеточными мембранами клеток-мишеней и запускают различные механизмы антителозависимой цитоток-сичности (аллергическая реакция II типа). Массивный цитолиз сопровождается соответствующими клиническими проявлениями. Классическим примером является гемолитическая болезнь в результате резус-конфликта или переливания иногруппной крови.
Цитотоксическим действием обладают также комплексы атиген—антитело, образующиеся в организме пациента в большом количестве после введения массивной дозы антигена (аллергическая реакция III типа). Чрезмерное количество циркулирующих иммунных комплексов не может быть быстро утилизировано стандартными механизмами фагоцитирующих клеток. Фиксируясь на эндотелии сосудов, в клубочках почек и других тканях, иммунные комплексы инициируют антителозависимую клеточно-опосредованную цитотоксичность, сопровождающуюся воспалительной реакцией. В связи с кумулятивным эффектом клиническая симптоматика аллергической реакции III типа имеет отсроченную манифестацию, иногда на срок более 7 суток. Тем не менее этот тип реакции относят к ГНТ. Реакция может проявляться как одно из осложнений от применения иммунных гетерологичных сывороток с лечебно-профилактической целью («сы вороточная болезнь»), а также при вдыхании белковой пыли {«легкое фермера»).
ГЗТ представляет собой лимфоидно-макро-фагальную реакцию, которая развивается в результате иммунной активации макрофагов под влиянием лимфоцитов, сенсибилизированных к аллергену. Основу ГЗТ составляют нормальные механизмы иммунного воспаления.
Для иммунной активации макрофага необходимы два воздействия: контактное и цитокиновое. Контактная стимуляция — результат рецептор-лигандного взаимодействия макрофага, несущего рецепторную молекулу CD40, и Т1-хелпера, экспрессирующего СD40-лиганд.
В исключительных случаях эту функцию может выполнять Т2-хелпер. Цитокиновая активация макрофага осуществляется gama-ИФН, который продуцируют Т1-хелперы, Т-киллеры или естественные киллеры. Кроме того, макрофаг может быть стимулирован ЛПС (через СD14-рецепторную молекулу). Ингибиторами активации макрофага являются продукты Т2-хелпера: ИЛ-4, -10,-13 и другие иммуноцитокины.
Иммунная активация макрофага резко повышает его эффективность в осуществлении антителозависимой клеточно-опосредованной цитотоксичности и иммунного фагоцитоза, т. е. деструкции и элиминации антигена. В процессе санации очага макрофаг при помощи цитокинов стимулирует иммуногенез, а также фиброз и ангиогенез. Последние необходимы для восстановления тканевой альтерации. В случае неспособности макрофага элиминировать патоген (например, микобактерии), на месте внедрения формируется гранулема. Это патологическое образование с центрально расположенным возбудителем, окруженным фиброзной тканью. По периферии образуется макрофагальный инфильтрат вплоть до макрофагально-синцитиального вала. Неэффективный ангиогенез ведет к трофической недостаточности гранулемы, и тогда она некротизируется («казеозный некроз»).
Лабораторная диагностика аллергии при аллергических реакциях I типа основана на выявлении суммарных и специфических реагинов (IgE, IgG4) в сыворотке крови пациента. При аллергических реакциях II типа в сыворотке крови определяют цитотоксические антитела (антиэритроцитарные, антилейкоцитарные, антитромбоцитарные и др.). При аллергических реакциях III типа в сыворотке крови выявляют иммунные комплексы. Для обнаружения аллергических реакций IV типа применяют кожно-аллергические пробы, которые широко используют в диагностике некоторых инфекционных и паразитарных заболеваний и микозов (туберкулез, лепра, бруцеллез, туляремия и др.).
Лечение аллергий основано на десенсибилизации макроорганизма малыми субим-мунизирующими дозами аллергена, который вводится в макроорганизм в течение продолжительного периода времени для индукции низкодозовой иммунологической толерантности (см. разд. 11.6). В тяжелых случаях применяют глюкокортикоидную терапию.
Реакции гиперчувствительности имеют также большое значение и в норме. Их механизмы
лежат в основе воспаления, которое способствует локализации инфекционного агента или иного антигена в пределах определенных тканей и формированию полноценной иммунной реакции защитного характера.
Реакции гиперчувствительности следует отличать от гиперергического типа иммунного реагирования организма, который может быть обусловлен как вариациями нейрогуморальной регуляции, так и некоторыми врожденными особенностями. Например, новозеландскую черную линию мышей от рождения отличает гипериммуноглобулинемия, а среди рыжеволосых людей часто наблюдается эозинофилия.
Иммунологическая память
При повторной встрече с антигеном организм формирует более активную и быструю иммунную реакцию — вторичный иммунный ответ. Этот феномен получил название имму нологической памяти.
Иммунологическая память имеет высо
кую специфичность к конкретному анти
гену, распространяется как на гуморальное,
так и клеточное звено иммунитета и обус
ловлена В- и Т-лимфоцитами. Она обра
зуется практически всегда и сохраняется
годами и даже десятилетиями. Благодаря
ней наш организм надежно затишен от
повторных антигенных интервенции. __
На сегодняшний день рассматривают два наиболее вероятных механизма формирования иммунологической памяти. Один из них предполагает длительное сохранение антигена в организме. Этому имеется множество примеров: инкапсулированный возбудитель туберкулеза, персистирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие патогены длительное время, иногда всю жизнь, сохраняются в организме, поддерживая в напряжении иммунную систему. Вероятно также наличие долгоживущих дендритных АПК, способных длительно сохранять и презентировать антиген.
Другой механизм предусматривает, что в процессе развития в организме продуктивного иммунного ответа часть антигенореактивных Т- или
В-лимфоцитов дифференцируется в малые покоящиеся клетки, или клетки иммунологической памяти. Эти клетки отличаются высокой специфичностью к конкретной антигенной детерминанте и большой продолжительностью жизни (до 10 лет и более). Они активно рециркулируют в организме, распределяясь в тканях и органах, но постоянно возвращаются в места своего происхождения за счет хоминговых рецепторов. Это обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному типу
Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и поддержания его длительное время на защитном уровне. Осуществляют это 2—3-кратными прививками при первичной вакцинации и периодическими повторными введениями вакцинного препарата — ревакцинациями (см. гл. 14).
Однако феномен иммунологической памяти имеет и отрицательные стороны. Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быструю и бурную реакцию — криз отторжения.
11.6. Иммунологическая толерантность
Иммунологическая толерантность — явление, противоположное иммунному ответу и иммунологической памяти. Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания.
В отличие от иммуносупрессии иммунологическая толерантность предполагает изначальную ареактивность иммунокомпе-тентных клеток к определенному антигену.
Открытию иммунологической толерантности предшествовали работы Р. Оуэна (1945), который обследовал разнояйцовых телят-близнецов. Ученый установил, что такие животные в эмбриональном периоде обмениваются через плаценту кровяными ростками и после рождения обладают одновременно двумя типами эритроцитов — своими и чужими. Наличие чужеродных эритроцитов не вызывало иммунную реакцию и не приводило к внутрисосудистому гемолизу. Явление было
названо эритроцитарной мозаикой. Однако Оуэн не смог дать ему объяснение.
Собственно феномен иммунологической толерантности был открыт в 1953 г. независимо чешским ученым М. Гашеком и группой английских исследователей во главе с П. Медаваром. Гашек в опытах на куриных эмбрионах, а Медавар — на новорожденных мышатах показали, что организм становится нечувствительным к антигену при его введении в эмбриональном или раннем постнатальном периоде.
Иммунологическую толерантность вызывают антигены, которые получили название толерогены. Ими могут быть практически все вещества, однако наибольшей толерогеннос-тью обладают полисахариды.
Иммунологическая толерантность бывает врожденной и приобретенной. Примером врожденной толерантности является отсутствие реакции иммунной системы на свои собственные антигены. Приобретенную толе рантность можно создать, вводя в организм вещества, подавляющие иммунитет (иммуно-депрессанты), или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность может быть активной и пассивной. Активная толерантность создается путем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать веществами, тормозящими биосинтетическую или пролиферативную активность иммуно-компетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.).
Иммунологическая толерантность отличается специфичностью — она направлена к строго определенным антигенам. По степени распространенности различают поливалентную и расщепленную толерантность. Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в состав конкретного антигена. Для расщепленной, или моновалентной, толерантности характерна избирательная невосприимчивость каких-то отдельных антигенных детерминант.
Степень проявления иммунологической толерантности существенно зависит от ряда свойств макроорганизма и толерогена. Так, на проявление толерантности влияет возраст и состояние имму-
нореактивности организма. Иммунологическую толерантность легче индуцировать в эмбриональном периоде развития и в первые дни после рождения, лучше всего она проявляется у животных со сниженной иммунореактивностью и с определенным генотипом.
Из особенностей антигена, которые определяют успешность индукции иммунологической толерантности, нужно отметить степень его чужеродности для организма и природу, дозу препарата и продолжительность воздействия антигена на организм. Наибольшей толе-рогенностью обладают наименее чужеродные по отношению к организму антигены, имеющие малую молекулярную массу и высокую гомогенность. Легче всего формируется толерантность на тимуснезависимые антигены, например, бактериальные полисахариды.
Важное значение в индукции иммунологической толерантности имеют доза антигена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств высококонцентрированного антигена. При этом наблюдается прямая зависимость между дозой вещества и производимым им эффектом. Низкодозовая толерантность, наоборот, вызывается очень малым количеством высокогомогенного молекулярного антигена. Соотношение «доза-эффект» в этом случае имеет обратную зависимость.
В эксперименте толерантность возникает через несколько дней, а иногда часов после введения толерогена и, как правило, проявляется в течение всего времени, пока он циркулирует в организме. Эффект ослабевает или прекращается с удалением из организма толерогена. Обычно иммунологическая толерантность наблюдается непродолжительный срок — всего несколько дней. Для ее пролонгирования необходимы повторные инъекции препарата.
Механизмы толерантности многообразны и до конца не расшифрованы. Известно, что ее основу составляют нормальные процессы регуляции иммунной системы. Выделяют три наиболее вероятные причины развития иммунологической толерантности:
1. Элиминация из организма антигенспеци-фических клонов лимфоцитов.
2. Блокада биологической активности им-мунокомпетентных клеток.
3. Быстрая нейтрализация антигена антителами.
Элиминации, или делеции подвергаются, как правило, клоны аутореактивных Т- и В-лимфоцитов на ранних стадиях их онтогенеза. Активация антигенспецифического рецептора (TCR или BCR) незрелого лимфоцита индуцирует в нем апоптоз. Этот феномен, обеспечивающий в организме ареактивность к аутоантигенам, получил название централь ной толерантности.
Основная роль в блокаде биологической активности иммунокомпетентных клеток принадлежит иммуноцитокинам. Воздействуя на соответствующие рецепторы, они способны вызвать ряд «негативных» эффектов. Например, пролиферацию Т- и В-лимфоцитов активно тормозит (be-ТФР. Дифференцировку ТО-хелпера в Т1 можно заблокировать при помощи ИЛ-4, -13, а в Т2-хелпер — у-ИФН. Биологическая активность макрофагов ингибируется продуктами Т2-хелпе-ров (ИЛ-4, -10, -13, be-ТФР и др.).
Биосинтез в В-лимфоците и его превращение в плазмоцит подавляется IgG. Быстрая инактивация молекул антигена антителами предотвращает их связывание с рецепторами иммунокомпетентных клеток — элиминируется специфический активирующий фактор.
Возможен адаптивный перенос иммунологической толерантности интактному животному путем введения ему иммунокомпетентных клеток, взятых от донора. Толерантность можно также искусственно отменить. Для этого необходимо активировать иммунную систему адъювантами, интерлейкинами или переключить направленность ее реакции иммунизацией модифицированными антигенами. Другой путь — удалить из организма толероген, сделав инъекцию специфических антител или проведя иммуносорбцию.
Феномен иммунологической толерантности имеет большое практическое значение. Он используется для решения многих важных проблем медицины, таких как пересадка органов и тканей, подавление аутоиммунных реакций, лечение аллергий и других патологических состояний, связанных с агрессивным поведением иммунной системы.
Таблица Основные характеристики иммуноглобулинов человека
Характеристика | IgM | IgG | IgA | IgD | IgE |
Молекулярная масса, кДа | 900 | 150 | 260 | 185 | 190 |
Количество мономеров | 5 | 1 | 1-3 | 1 | 1 |
Валентность | 10 | 2 | 2-6 | 2 | 2 |
Уровень в сыворотке крови, г/л | 0,5-1,9 | 8,0-17,0 | 1,4- 3,2 | 0,03- -0,2 | 0,002-0,004 |
Период полураспада, сут | 5 | 25 | 6 | 3 | 2 |
Связывание комплемента | + ++ | ++ | - | - | — |
Цитотоксическая активность | +++ | ++ | — | — | _ |
Опсонизация | + + + | + | + | — | — |
Преципитация | + | ++ | + | — | + |
Агглютинация | + + + | + | + | — | + |
Участие в анафилактических реакциях | + | + | + | — | +++ |
Наличие рецепторов на лимфоцитах | + | + | + | + | + |
Прохождение через плаценту | - | - | + | — | — |
Наличие в секретах в секреторной форме | +/- | - | + | — | — |
Поступление в секреты путем диффузии | + | + | + | + | + |
Таблица 11.3. Классификация аллергических реакции по патогенез [по Джеллу и Кумбсу , 1968]
Тип реакции | Фактор патогенеза | Механизм патогенеза | Клинический пример |
I, анафилактический (ТНТ) | lgE. lgG4 | Образование рецепторного комплекса IgE (G4)-FcR тучных клеток и базофилов—> Взаимодействие эпитопа аллергена с рецепторным комплексом—> Активация гучных клеток и базо- филов—> Высвобождение медиаторов воспаления и других биологически активных веществ | Анафилаксия, анафилактический шок. поллинозы |
II, цитотокеический (ГНТ) | IgM, IgG | Выработка цитотоксических антител-> Активация антителозависимого цитолиза | Лекарственная волчанка, аутоиммунная гемолитическая болезнь. аутоиммунная тромбо-цитопения |
Тип реакции | Фактор патогенеза | Механизм патогенеза | Клинический пример |
III, иммунокомплек- сный (ГНТ) | IgM, IgG | Образование избытка иммунных комплексов—> Отложение иммунных комплексов на базальных мембранах, эндотелии и в соединительнотканной строме-> Активация антителозависимой клеточно-опосредованной цито-токсичности —> Запуск иммунного воспаления | Сывороточная болезнь, системные заболевания соединительной ткани, феномен Артюса, «легкое фермера» |
IV. клеточно-опос- редованный (ГЗТ) | Т-лимфоциты | Сенсибилизация Т-лимфоцитов—> Активация макрофага-» Запуск иммунного воспаления | Кожно-аллергическая проба. контактная аллергия, белковая аллергия замедленного типа |
Дата: 2019-02-19, просмотров: 256.