Системы отопления представляют собой разветвленную сеть теплопроводов, выполняющих важную функцию распределения теплоносителя по отопительным приборам. Целью гидравлического расчета является определение диаметров теплопроводов при заданной тепловой нагрузке и расчетном циркуляционном давлении, установленном для данной системы.
Как известно из курса гидравлики, при движении реальной жидкости по трубам всегда имеют место потери давления на преодоление сопротивления двух видов — трения и местных сопротивлений. К местным сопротивлениям относятся тройники, крестовины, отводы, вентили, краны, отопительные приборы, котлы, теплообменники и т. д.
Потери давления , Па, на преодоление трения на участке теплопровода с постоянным расходом движущейся среды (воды, пара) и неизменным диаметром определяют по формуле
где — диаметр теплопровода, м; — коэффициент гидравлического трения (величина безразмерная); — скорость движения воды в теплопроводе, м/с; — плотность движущейся среды, кг/м’; —удельные потерн давления; Па/м; — длина участка теплопровода, м.
Потерн давления на преодоление местных сопротивлений, Па, определяют по формуле:
где — сумма коэффициентов местных сопротивлении в данном участке теплопровода, величина безразмерная; — динамическое давление воды о данном участке теплопровода, Па.
Суммарные потери давления, возникающие при движении воды в теплопроводе циркуляционного кольца, должны быть меньше расчетно-циркуляционного давления, устанавливаемого для данной системы. Под расчетным циркуляционным давлением понимается давление, необходимое для поддержания принятого гидравлического режима системы отопления. Это то давление, которое может быть израсходовано в расчетных условиях на преодоление гидравлических сопротивлении в системе.
Гидравлический расчет теплопроводов систем водяного отопления выполняют различными методами. Наибольшее распространение получили методы расчета теплопроводов по удельным потерям и по характеристикам сопротивления.
Первый метод заключается в раздельном определении потерь давления на трение и в местных сопротивлениях. При этом диаметры теплопроводов определяют при постоянных перепадах температуры воды во всех стояках и ветвях , равных расчетному перепаду температуры воды во всей системе .
Во втором методе устанавливают распределение потоков воды в циркуляционных кольцах системы и получают переменные (неравные) перепады температуры воды в стояках и ветвях . Предварительно выбирают диаметр теплопровода на каждом расчетном участке с учетом допустимых скоростей движения воды. Расчетным участком называют участок теплопровода с неизменным расходом теплоносителя.
При расчете главного циркуляционного кольца (наиболее неблагоприятного в гидравлическом отношении циркуляционного контура) рекомендуется предусматривать запас давления на неучтенные сопротивления, но не более 10 % расчетного давления:
Методика гидравлического расчета теплопровода систем водяного отопления.
1. До гидравлического расчета теплопроводов выполняют аксонометрическую схему системы отопления со всей запорно-регулирующей арматурой. К составлению такой схемы приступают после того, как: подсчитана тепловая мощность системы отопления здания; выбран тип отопительных приборов и определено их число для каждого помещения; размещены на поэтажных планах здания отопительные приборы, горячие и обратные стояки, а на планах чердака и подвала — подающие и обратные магистрали; выбрано место для теплового пункта или котельной; показано на плане чердака или верхнего этажа (при совмещенной крыше) размещение расширительного бака и приборов воздухоудаления.
На планах этажей, чердака и подвала горячие и обратные стояки системы отопления должны быть пронумерованы, а на аксонометрической схеме кроме стояков нумеруют все расчетные участки циркуляционных колец— участки труб, а также указывают тепловую нагрузку и длину каждого участка. Сумма длин всех расчетных участков составляет величину расчетного циркуляционного кольца.
2. Выбирают главное циркуляционное кольцо. В тупиковых схемах однотрубных систем за главное принимается кольцо, проходящее через дальний стояк, а в двухтрубных системах — кольцо, проходящее через нижний прибор дальнего стояка. В последнем случае — наибольшая, а — наименьшая, тогда и отношение , определяющее давление на 1 м длины, здесь будет наименьшим. При попутном движении воды наиболее неблагоприятным в гидравлическом отношении является кольцо, проходящее через один из средних наиболее нагруженных стояков.
3. Определяют расчетное циркуляционное давление
4. При расчете по методу удельных потерь давления для предварительного выбора диаметров теплопроводов определяют среднее значение удельного падения давления по главному циркуляционному кольцу:
где — коэффициент, учитывающий долю потери давления на местные сопротивления от общей величины расчетного циркуляционного давления ( = 0,35 — для систем отопления с искусственной циркуляцией, = (),5 — для систем отопления с естественной циркуляцией); —общая длина расчетного циркуляционного кольца, м; — расчетное циркуляционное давление, Па.
5. Определяют расходы воды на расчетных участках , кг/ч:
где — тепловая нагрузка участка, составленная из тепловых нагрузок отопительных приборов, обслуживаемых протекающей по участку водой, Вт; — теплоемкость воды, кДж/(кг-К); — перепад температур воды в системе, °С; и — коэффициенты; 3,6 — коэффициент перевода Вт в кДж/ч.
Ориентируясь на полученное значение и определив количество воды , кг/ч, можно с помощью расчетной таблицы подобрать оптимальные диаметры труб расчетного кольца. Все данные, получаемые при расчете теплопровода, заносят в специальную таблицу (табл. 7.2).
При расчете отдельных участков теплопровода необходимо иметь в виду следующее: местное сопротивление тройников и крестовин относят лишь к расчетным участкам с наименьшим расходом воды; местные сопротивления отопительных приборов, котлов и подогревателей учитывают поровну в каждом примыкающем к ним теплопроводе.
Если по произведенному расчету с учетом запаса до 10% расходуемое давление в системе будет больше или меньше расчетного давления , то на отдельных участках кольца следует изменить диаметры труб.
После расчета главного циркуляционного кольца рассчитывают параллельные циркуляционные кольца, (которые состоят из участков главного кольца (уже рассчитанных) и дополнительных (не общих) участков, еще не рассчитанных. Проводится «увязка» потерь давления, т.е. получение равенства потерь давления на параллельно соединенных дополнительных участках других колец и не общих участках главного циркуляционного кольца.
Согласно п. 3.35 СНиП 2.04.05—86, неувязка потерь давления в циркуляционных кольцах (без учета потерь давления в общих участках) не должна превышать 5 % при попутной и 15 % при тупиковой разводке теплопроводов систем водяного отопления в расчете с постоянными разностями температур в подающей и обратной магистралях.
Формулу используют для определения расхода воды на расчетном участке в однотрубных проточных и двухтрубных системах отопления.
Для однотрубной системы с замыкающими участками расход воды в приборах определяется с учетом коэффициента затекания воды в приборы, представляющего собой отношение массы воды, затекающей в прибор, к общей массе воды, проходящей по стояку:
где — масса воды, поступающей в прибор, кг/ч; — масса воды, проходящей по стояку, кг/ч.
При гидравлическом расчете однотрубной системы отопления потеря давления в межрадиаторных узлах оценивается произведением суммарного коэффициента местного сопротивления узла на динамическое давление стояка. Данные о коэффициентах затекания и суммарных коэффициентах местного сопротивления узлов различных систем приведены в справочной литературе.
16. 1. Электрическое отопление;
2. Газовое отопление;
Печное отопление.
Особенности и виды местного отопленияПри электрическом отоплении электроэнергия преобразуется в тепловую энергию. Эта система является очень перспективной. Самое простое отопление считается газовое. Оно же является и самым дешевым, но имеет и два больших минуса, такие как токсичность и взрывоопасность. При печном отоплении получение, перенос и передача теплоты происходит в одном помещении. Топливо сжигается в печи, после чего нагреваются стенки дымохода и передают тепло в помещение.
Печное отопление.Достоинства:
· Дешевизна изготовления и обслуживания (топлива).
· Обеспечивает вентиляцию помещения и сухость воздуха.
· Не нуждается в обслуживании, когда не используется. Всегда готово к началу работы.
· Не зависит от "внешних поставщиков" (газ, электричество и т.п.).
· Инерционность (зимой чтобы предохранить дом от промерзания достаточно топить в нем печь 1 раз в неделю).
· Дополнительные функции (приготовление пищи, сушка).
Недостатки:
· Неправильная циркуляция воздуха (сквозняки).
· Нет возможности автоматизировать процесс.
Одна печь может отапливать помещение не более 50 м2 или 3 - 4-ех смежных комнат. Камины не пригодны для отопления помещения, они служат для украшения, вентиляции, краткосрочного (пока топятся) обогрева комнаты и для приготовления пищи (шашлыки и т.п.). Стоимость материалов для сооружения печи - от 1200 до 20 - 30 тыс.руб. в зависимости от размеров и отделки.
Электрическое отопление.
Наиболее простая в монтаже и эксплуатации, удобная и безопасная система. Безопасность обеспечивается высококачественной электропроводкой и подбором нагревающих устройств: масляные радиаторы, теплые полы, тепловые завесы. Электрическое отопление всегда готово к работе, не боится замораживания; такую систему проще всех других автоматизировать и настроить согласно сиюминутным пожеланиям хозяина.
Необходимо отметить два существенных недостатка электрической системы отопления:
1.Велики расходы на оплату электричества.
2. При отключении электричества она становится бесполезной.
Газовое отопление
Такой обогрев наиболее комфортен, экономичен и эффективен. Кроме всего этого, газовое отопление является наиболее экологичным решением проблемы отопления.
Газовое отопление является весьма недорогим и надежным решением в эксплуатации. Для такого вида отопления можно
использовать как газ, передающийся по трубам, так и газ в баллонах. Использование газа в баллонах идеальным образом подходит при проектировании системы газового отопления в загородном строительстве.
При выборе газового котла в обязательном порядке учитываются все архитектурные особенности дома, технические, санитарные и экономические показатели прибора, а также тепловой режим помещения. Правильный расчет мощности аппарата предопределяет безопасную и надежную работу системы отопления. Такой расчет должен производиться с учетом всех теплопотерь дома, коэффициентов, которые учитывают возможные неблагоприятные условия и климатическую зону местности. Газовые котлы, как правило, бывают: малой, средней и большой мощности.
Отопление многоэтажных домов
В строительстве многоэтажных домов наиболее широко используются три схемы устройства отопления: вертикальные однотрубная и двухтрубная, горизонтальная двухтрубная. Различные системы отопления многоэтажных домов обладают и преимуществами, и недостатками.
Достоинства и недостатки однотрубных вертикальных систем
. Главным же ее плюсом, конечно же, можно назвать надежность. Ее дополняют низкие материальные затраты, простота заготовок, возможность унификации деталей, простота монтажа.
Недостатки у этой системы есть и довольно существенные. Например, в отопительном сезоне существуют периоды существенного повышения атмосферного воздуха, но отопление выключать нельзя, поскольку предвидится похолодание. При таком режиме все термостаты будут закрыты, и теплоноситель пойдет мимо радиаторов в выходящую трубу практически неостывшим. Если теплоснабжающей организацией является ТЭЦ, то это нежелательное явление. Но в условиях большого города и если такие ситуации случаются редко – это не существенный недостаток.
Однотрубные вертикальные системы нежелательно применять для домов, этажность которых менее 9-ти. Максимальное значение – 25.
17. ----------
Дата: 2019-02-19, просмотров: 286.