Нервные волокна выполняют специализированную функцию – проведение нервных импульсов. По морфологическому признаку волокна делятся на миелиновые (покрытые миелиновой оболочкой) и безмиелиновые. Нерв состоит из большого числа нервных волокон (миелиновых и безмиелиновых), заключенных в общую оболочку.
Нервное волокно обладает следующими свойствами: возбудимостью, проводимостью и лабильностью.
Распространение возбуждения по нервным волокнам осуществляется на основе ионных механизмов генерации потенциала действия. При распространении возбуждения по безмиелиновому нервному волокну местные электрические токи, которые возникают между его возбужденным участком, заряженным отрицательно, и невозбужденными, Заряженными положительно, деполяризуют мембрану до критического уровня, что приводит к генерации ПД в соседних невозбужденных участках, которые становятся возбужденными, и т. д. Этот процесс происходит в каждой точке мембраны на всем протяжении волокна. Такое проведение возбуждения называется непрерывным. Возбуждение по нервному волокну может распространяться в обе стороны от места его возникновения. Если на нервное волокно наложить регистрирующие электроды на некотором расстоянии друг от друга, а между ними нанести раздражение, то возбуждение зафиксируют электроды по обе стороны от места раздражения.
Наличие у миелиновых волокон оболочки, обладающей высоким электрическим сопротивлением, а также участков волокна, лишенных оболочки (перехватов Ранвье), приводит к тому, что местные электрические токи не могут проходить через миелин, они возникают только между соседними перехватами Ранвье, где деполяризуют мембрану невозбужденного перехвата и генерируют ПД (рис.4). Возбуждение как бы «перепрыгивает» через участки нервного волокна, покрытые миелином. Такой механизм распространения возбуждения называется сальтаторным, или скачкообразным, он позволяет более быстро и экономично передавать информацию по сравнению с непрерывным проведением, поскольку в него вовлекается не вся мембрана, а только ее небольшие участки.
Амплитуда ПД в 5 6 раз превышает пороговую величину, не-обходимую для возбуждения соседнего перехвата, поэтому ПД может «перепрыгивать» не только через один, но и через несколько перехватов. Это явление может наблюдаться при снижении возбудимости соседнего перехвата под действием какого-либо фармакологического вещества, например, новокаина, кокаина и др.
Проведение возбуждения по нервному волокну возможно лишь в том случае, если сохранена его анатомическая и физиологическая целостность. Различные факторы, изменяющие свойства волокон (наркотические вещества, охлаждение, перевязка и т. д.), приводят к нарушению передачи возбуждения.
Возбуждение по нервному волокну, входящему в состав нерва, распространяется изолированно, т. е. не переходя с одного волокна на другое. Это обусловлено тем, что сопротивление жидкости, заполняющей межклеточные пространства, значительно ниже сопротивления мембраны нервных волокон, и основная часть тока, возникающего между возбужденным и невозбужденным участками, проходит по межклеточной жидкости, не действуя на другие волокна. Если бы возбуждение передавалось с одного нервного волокна на другое, то нормальное функционирование организма было бы невозможно, так как нервы содержат большое количество чувствительных, двигательных, вегетативных волокон, которые несут информацию как от различных рецепторов к ЦНС, так и от ЦНС к эффекторным органам.
Нервные волокна по скорости проведения возбуждения делятся на три типа: А, В, С. Волокна типа А, в свою очередь, делятся на подтипы: А-а, А-р, А-у, А-5 (рис. 5).
Волокна типа А покрыты миелиновой оболочкой. Наиболее толстые из них А-а имеют диаметр 12 – 22 мкм и скорость проведения возбуждения 70–120 м/с. Эти волокна проводят возбуждение от моторных нервных центров спинного мозга к скелетным мышцам (двигательные волокна) и от рецепторов мышц к соответствующим нервным центрам.
Три другие группы волокон типа А (р, у, 5) имеют меньший диаметр – от 8 до 1 мкм и меньшую скорость проведения возбуждения – от 5 до 70 м/с. Волокна этих групп преимущественно проводят возбуждение от различных рецепторов (тактильных, температурных, болевых, рецепторов внутренних органов) в ЦНС, за исключением у-волокон, значительная часть которых проводит возбуждение от спинного мозга к интрафузальным мышечным волокнам.
К волокнам типа В относятся миелинизироваыные преганглионарные волокна вегетативной нервной системы. Их диаметр – 1 – 3,5 мкм, а скорость проведения возбуждения – 3–18 м/с.
К волокнам типа С относятся безмиелиповые нервные волокна малого диаметра – 0,5 – 2 мкм. Скорость проведения возбуждения в этих волокнах не более 3 м/с (0,5 – 3 м/с). Большинство волокон типа С – это постганглионарные волокна симпатического отдела вегетативной нервной системы, а также нервные волокна, которые проводят возбуждение от болевых рецепторов, некоторых терморецепторов и рецепторов давления.
Нервные волокна обладают лабильностью (функциональной подвижностью) – способностью воспроизводить определенное количество циклов возбуждения в единицу времени в соответствии с ритмом действующих раздражителей. Мерой лабильности является максимальное количество циклов возбуждения, которое способно воспроизвести нервное волокно в соответствии с ритмом раздражения без искажений. Лабильность определяется длительностью потенциала действия (длительностью фазы абсолютной рефрактерности), у нервных волокон лабильность очень высокая (до 1000 Гц).
Н. Е. Введенский (1891 г.) обнаружил, что если участок нерва подвергнуть воздействию повреждающего агента (химического вещества, нагревания или охлаждения, постоянного тока), то лабильность такого участка резко снижается. Восстановление исходного состояния нервного волокна после каждого потенциала действия в поврежденном участке происходит медленно. При действии на этот участок частых раздражителей он не может воспроизвести ритм раздражения – проведение импульсов нарушается. Такое состояние было названо парабиозом. В развитии парабиоза различают три последовательно сменяющие друг друга фазы: уравнительную, парадоксальную, тормозную.
В уравнительную фазу ответные реакции на частые и редкие раздражители становятся одинаковыми. В нормальных условиях величина ответной реакции иннервируемых нервом мышечных волокон зависит от частоты раздражения: на редкие раздражители ответная реакция меньше, а на частые – больше. В начальную стадию парабиоза при редком ритме раздражений (25 Гц) все импульсы проводятся через поврежденный участок, так как возбудимость после предыдущего импульса успевает восстановиться. При высоком ритме раздражений (100 Гц) последующие импульсы могут поступать в период рефрактерности, поэтому часть импульсов не проводится. Например, если проводится только каждое четвертое возбуждение (т. е. 25 импульсов из 100), то амплитуда ответной реакции становится такой же, как на редкие раздражители (25 Гц) – происходит уравнивание ответной реакции.
В парадоксальную фазу происходит дальнейшее снижение лабильности. Ответная реакция возникает и на редкие, и на частые раздражители, но на частые она меньше, так как они еще больше снижают лабильность, удлиняя фазу абсолютной рефрактерности. В результате ответная реакция на редкие раздражители будет больше, чем на частые.
В тормозную фазу и редкие, и частые раздражители не вызывают ответной реакции. При этом мембрана нервного волокна де-поляризована и не способна генерировать ПД, т. е. нерв утрачивает способность к проведению возбуждений.
Явление парабиоза лежит в основе локального обезболивания. Влияние анестезирующих веществ связано с нарушением механизма проведения возбуждения по нервным волокнам и снижением лабильности. Парабиоз – явление обратимое. Если парабнотическое вещество действует недолго, то после прекращения его действия нерв выходит из состояния парабиоза через те же фазы, по в обратной последовательности.
Возникновение парабиотического состояния связано с тем, что при действии на нервное волокно парабиотического фактора нарушается способность мембраны увеличивать натриевую проницаемость (инактивация натриевых каналов) в ответ на раздражение, и проведение следующего импульса блокируемся.
Физиология мышц
Существует три типа мышц: поперечно-полосатые скелетные мышцы, поперечно-полосатая сердечная мышца и гладкие мышцы.
Мышцы обладают следующими физиологическими свойствами:
1. возбудимостью, т. е. способностью возбуждаться при действии раздражителей;
2. проводимостью – способностью проводить возбуждение;
3. сократимостью – способностью изменять свою длину или напряжение при возбуждении;
4. растяжимостью – способностью изменять свою длину под действием растягивающей силы;
5. эластичностью – способностью восстанавливать свою первоначальную длину после прекращения растяжения.
Сила мышцы определяется максимальным грузом, который мышца может поднять. Мышцы способны совершать работу. Работа мышц определяется произведением величины поднятого груза на высоту подъема. Максимальная работа производится при средних величинах нагрузок. Лабильность мышцы равна 200–300 Гц.
При непосредственном раздражении мышцы (прямое раздражение) или опосредованно через иннервирующий ее двигательный нерв (непрямое раздражение) одиночным стимулом возникает одиночное мышечное сокращение, в котором выделяют три фазы: латентный период. – время от начала действия раздражителя до начала ответной реакции; фазу сокращения (фаза укорочения) и фазу расслабления.
В естественных условиях к скелетной мышце из ЦНС поступают не одиночные импульсы, а серия импульсов, на которые мышца отвечает длительным сокращением. Длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение, называется тетаническим сокращением, или тетанусом (рис.6). Различают два вида тетануса: зубчатый и гладкий.
Если каждый последующий стимул поступает к мышце в тот период, когда она находится в фазе укорочения, то возникает гладкий тетанус, а если в фазу расслабления – зубчатый тетанус.
Амплитуда тетанического сокращения превышает амплитуду одиночного мышечного сокращения. Н. Е. Введенский объяснил это явление фазными изменениями возбудимости мышцы, введя понятие об оптимуме и пессимуме частоты раздражения. Оптимум – такая частота раздражения, при которой каждое последующее раздражение наносится в фазу повышенной возбудимости. Тетанус при этом будет максимальным по амплитуде. Пессимум – такая частота раздражения, при которой каждое последующее раздражение наносится в фазу пониженной возбудимости. Амплитуда тетануса при этом будет минимальной.
Различают несколько видов мышечных сокращений: изотонический, изометрический и смешанный. При изотоническом сокращении мышцы происходит изменение ее длины, а напряжение остается постоянным. Такое сокращение происходит в том случае, если отсутствует сопротивление изменению ее длины. К изотоническому типу сокращений относятся сокращения мышц языка. При изометрическом сокращении длина мышечных волокон остается постоянной, а их напряжение возрастает. Такое сокращение мышцы возникает при попытке поднять чрезмерно большой груз. В естественных условиях сокращения мышц никогда не бывают чисто изотоническими или изометрическими, они имеют смешанный характер, т. е. происходит изменение и длины, и напряжения мышцы.
Дата: 2019-02-02, просмотров: 237.