Воздух обладает массой и весом, гравитационное поле делает воздушные массы у поверхности земли наиболее плотными и, следовательно, воздух обладает наибольшим давлением. С поднятием на высоту плотность и давление воздуха уменьшаются. Если на уровне моря 1 м3 воздуха весит 1293 г, то на высоте 20 км его вес составляет лишь 64 г, т.е. при одинаковом процентном содержании кислорода его весовая концентрация на высоте 20 км примерно в 20 раз меньше, чем на уровне моря.
На поверхности земли колебания атмосферного давления связаны с погодными условиями и не превышают 4-10 мм рт.ст. Однако возможны существенные повышения и понижения атмосферного давления, способные привести к неблагоприятным изменениям в организме.
Пониженное атмосферное давление способствует развитию у людей симптомокомплекса, известного под названием высотной болезни. Высотная болезнь может возникать при быстром подъеме на высоту и, как правило, встречается у летчиков и альпинистов в случае отсутствия мер, предохраняющих от влияния пониженного атмосферного давления. В легочной ткани происходит обмен газов крови и альвеолярного воздуха. Диффундируя через мембраны, газы стремятся к состоянию равновесия, переходя из области высокого давления в область низкого давления.
Высотная болезнь возникает в результате понижения парциального кислорода во вдыхаемом воздухе, что приводит к кислородному голоданию тканей.
По мере падения парциального давления кислорода уменьшается насыщение кислородом гемоглобина с нарушением снабжения клеток кислородом.
Резерв кислорода в организме не превышает 0,9 л и определяется количеством растворенного в плазме крови кислорода. Этого резерва достаточно лишь на 5-6 минут жизни, после чего стремительно развиваются явления кислородной недостаточности. К кислородному голоданию наиболее чувствительны мозговые клетки, так как кора головного мозга потребляет кислорода в 30 раз больше на единицу массы, чем все другие ткани. Мозговые клетки гибнут раньше, чем падает тонус грудных мышц, когда еще возможны дыхательные движения. Первые симптомы кислородной недостаточности определяются при подъеме на высоту 3000 м без кислородного прибора.
В процессе постепенной адаптации к пониженному атмосферному давлению в организме развиваются компенсаторно-приспособительные механизмы (увеличение числа эритроцитов, повышение уровня гемоглобина, изменение окислительных процессов в организме и т.д.), позволяющие сохранить здоровье и работоспособность, что может наблюдаться у жителей высокогорных районов Дагестана, Памира, Перу, где селения располагаются на высоте 2500-4500 м над уровнем моря.
Повышенное атмосферное давление является основным производственным фактором при строительстве подводных тоннелей, метро, при проведении водолазных работ и т.д.
Для проведения работ под водой или под землей в грунтах, насыщенных водой, сооружаются специальные рабочие камеры - кессоны. Кессоны заполняются сжатым воздухом, который вытесняет воду из рабочего пространства. На давление столба в 10 м в кессоне повышается деление на
1 атм. сверх обычного атмосферного (1 атм.). В производственных условиях в зависимости от заглубления кессона добавочное давление составляет от 0,2 до
4 атм. При работе в кессонах отмечают 3 периода: период компрессии, т.е. период опускания кессона, когда происходит постепенное нарастание давления сверх обычного, период работы в кессоне в условиях повышенного давления и период декомпрессии, когда происходит подъем рабочих на поверхность земли, т.е. выход из зоны повышенного в зону нормального атмосферного давления. Период компрессии и второй период пребывания рабочих в кессонах или водолазов под водой (в условиях повышенного атмосферного давления) при соблюдении правил безопасности переносятся без каких-либо выраженных неприятных ощущений. В зоне повышенного атмосферного давления происходит насыщение крови и тканей организма газами воздуха, главным образом азотом. Это насыщение продолжается до уравновешивания парциального давления азота в окружающем воздухе с парциальным давлением азота в тканях.
Быстрее всего насыщается кровь, медленнее жировая ткань. В то же время жировая ткань насыщается азотом в 5 раз больше, чем кровь или другие ткани. Общее количество азота, растворенного в организме под повышенным атмосферным давлением, может достигать 4-6 л против 1 л, растворенного при нормальном давлении.
При быстром переходе из зоны повышенного атмосферного давления в зону нормального нарушаются процессы десатурации азота из тканей и жидкостей организма. Скорость десатурации азота из различных тканей неодинакова, например, слабо васкуляризованная жировая ткань медленно отдает азот.
При быстрой декомпрессии создается большая разница между парциальным делением азота в альвеолярном воздухе и парциальном давлении азота, растворенного в тканях организма. Азот не успевает выделится через легкие и остается в крови и тканях в виде пузырьков. Опасность газовой эмболии возникает тогда, когда парциальное деление азота в тканях будет выше парциального давления азота в альвеолярном воздухе более чем в 2 раза. Газовая эмболия приводит к тяжелому профессиональному заболеванию - кессонной болезни. Тяжесть и симптоматика кессонной болезни определяется локализацией и массивностью закупорки сосудов газовыми эмболами. В результате медленной десатурации жировой ткани чаще поражаются ткани с большим содержанием липидных соединений - центральная и периферическая нервная система, подкожная жировая клетчатка, костный мозг, суставы.
Дата: 2019-02-02, просмотров: 216.