Работа с динамической памятью
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Цель: приобрести навыки работы с динамической памятью, освоить механизм адресации.

Теоретические сведения

Указатели

Оперативная память компьютера может рассматриваться как массив байтов, индексируемый от нуля. Номер каждого байта в этом массиве называется его адресом. Адресом переменной называется адрес ее первого байта. Для получения адреса переменной в языке Pascal используется унарная операция @: @x – адрес переменной x.

Переменные, в которых хранятся адреса, называются указателями. Любой указатель в 32-разрядной операционной системе занимает 4 байта. Это дает возможность адресовать  ячеек памяти. С переходом на 64-битные системы объем адресуемой оперативной памяти станет практически безграничным.

Для чего нужны указатели? Их использование повышает гибкость программирования и разграничивает обязанности: указатель знает лишь адрес переменной, сама переменная может менять свое значение независимо от наличия указателя на нее. Можно провести аналогию между указателями и справочной службой 09. Клиент обращается в справочную службу для того, чтобы узнать номер телефона абонента. Другими словами клиент обращается к указателю, который знает адрес объекта и, следовательно, может вернуть значение этого объекта (в данном случае – номер телефона). Гибкость такого способа очевидна: не следует помнить номера всех телефонов, достаточно знать номер телефона справочной. Кроме того, если номер телефона абонента будет изменен, то в справочной службе будет произведена оперативная корректировка информации, и при последующем обращении в службу клиент получит измененный номер телефона. Другой пример: несколько указателей (банкоматов) указывают на один объект (банковский счет). Посредством разных банкоматов можно снимать деньги с одного банковского счета. Третий пример: файловый указатель, который обращается всякий раз к текущему элементу файла, после чего перемещается на следующий. Это позволяет единым образом (через один указатель) работать с различными данными, находящимися в файле.

В языке Delphi Pascal указатели делятся на типизированные и бестиповые. Если T – некоторый тип, то типизированный указатель на него описываются следующим образом: ^T (указатель на тип). Бестиповой указатель описывается с помощью типа pointer. Если типизированный указатель хранит адрес переменной заданного типа, то бестиповой хранит просто адрес некоторого участка памяти.

Будем изображать тот факт, что указатель pa хранит адрес переменной a, следующим образом:

При этом говорят, что pa указывает на a. Указатель может также хранить специальное значение, задаваемое предопределенной константой nil. Это «нулевое значение» для указателей, означающее, что указатель никуда не указывает. Будем называть такой указатель нулевым и изображать его следующим образом:

Типизированные указатели разных типов несовместимы по присваиванию. Однако типизированный и бестиповой указатель совместимы по присваиванию в обе стороны. Указатели одного типа, а также типизированный и бестиповой указатель можно сравнивать на равенство и неравенство. Далее приводятся примеры допустимых действий с указателями:

var a: integer;

r: real;

pa,pa1: ^integer;

p,p1: pointer;

  pr: ^real;

Begin

pa:=@a;

p:=@a;

pa:=p;

p:=pa;

p:=nil;

pa:=nil;

if pa=pa1 then ;

if pa<>p then ;

...

Следующие действия, наоборот, являются недопустимыми и вызовут ошибку компиляции, поскольку выполняются над указателями, имеющими различный базовый тип:

pr:=pa;   // ошибка: несовместимые типы

if pr=pa then; // ошибка: несовместимые типы

Следует помнить, что в языке Pascal принята именная эквивалентность типов. Поэтому в следующем примере переменные pb и pb1 считаются принадлежащими к разным типам:

var pb: ^integer;

pb1: ^integer;

Begin

pb:=pb1;     // ошибка компиляции!

if pb<>pb1 then ; // ошибка компиляции!

...

Чтобы можно было присваивать и сравнивать указатели на один и тот же тип, описанные в разных местах, а также передавать указатели как параметры подпрограмм, следует определить новый тип-указатель и описывать переменные-указатели, используя этот тип:

type pinteger=^integer;

var pb: pinteger;

pb1: pinteger;

procedure pr(p: pinteger);

Begin

...

end;

...

pb:=pb1;     // верно

if pb<>pb1 then ; // верно

pr(pb);      // верно

К типизированным указателям применима операция разыменовыния ^ : запись pa^ означает «объект, на который указывает pa» (под объектом здесь понимается область памяти, выделенная программой и трактуемая как переменная или константа определенного типа). В частности, если pa хранит адрес переменной a, то разыменованный указатель pa^ и имя переменной a эквивалентны, поскольку ссылаются на один объект. Вообще, ссылка на объект – это выражение, однозначно определяющее этот объект. В нашем примере имя переменной a и выражение pa^ являются ссылками на один и тот же объект в памяти.

Нулевой указатель и указатель типа pointer разыменовывать нельзя. При разыменовании переменной-указателя, имеющей нулевое значение, произойдет ошибка времени выполнения, разыменование же указателя pointer приведет к ошибке компиляции.

Если типизированный указатель хранит адрес записи или массива, то в Delphi Pascal при обращении через указатель к полю записи или элементу массива операцию разыменования можно не использовать. Например:

type IArr = array [1..100] of integer;

Rec = record i,j: real; end;

var a: IArr; pa: ^IArr;

r: Rec; pr: ^Rec;

Begin

pa:=@a;

pr:=@r;

pa[1]:=2; // вместо pa^[1]:=2

pr.i:=3; // вместо pr^.i:=3

end.

Неявные указатели

Указатели неявно встречаются во многих конструкциях языка программирования. Например, при передаче параметра по ссылке в подпрограмму на самом деле передается указатель. Сравним две реализации одной процедуры:

procedure Mult2(var i: integer);

Begin

i:=i*2;

end;

procedure Mult2P(pi: pinteger);

Begin

pi^:=pi^*2;

end;

var a: integer;

Begin

a:=3;

Mult2(a);

Mult2P(@a);

...

Код, генерируемый для таких процедур, практически идентичен: в обоих случаях в процедуру передается адрес переменной, которую следует удвоить. Однако пользоваться первой версией процедуры с параметром, передаваемым по ссылке, гораздо удобнее: в теле процедуры не надо разыменовывать указатель и при вызове процедуры в качестве параметра надо указывать саму переменную, а не ее адрес. Из данного примера видно, что параметр, передаваемый по ссылке, можно трактовать как указатель, который при использовании неявно разыменовывается.

Другой пример неявных указателей – процедурные переменные. Процедурная переменная хранит адрес процедуры или функции с соответствующей сигнатурой, либо же значение nil (напомним, что сигнатура подпрограммы определяется ее заголовком и включает количество и типы ее параметров, а для функций также и тип возвращаемого значения). Для присваивания процедурной переменной a адреса подпрограммы p с соответствующей сигнатурой знак операции @ использовать необязательно: записи a:=@p и a:=p равнозначны. Например:

type proc = procedure (i: integer);

func = function: real;

var a: proc;

b: func;

procedure p(i: integer);

Begin

...

end;

function f: real;

Begin

...

end;

Begin

a:=@p;

b:=f; // равноценно b:=@f

a(5); // вызов процедуры через процедурную переменную a

writeln(b); // вызов функции через процедурную переменную b

end

Указатели pointer

Бестиповые указатели pointer хранят адрес памяти, не связанный с объектом определенного типа, и не могут быть разыменованы. Чтобы воспользоваться данными по этому адресу, бестиповой указатель следует преобразовать к указателю на конкретный тип. Например:

type pinteger = ^integer;

preal =^real;

var i: integer;

r: real;

p: pointer;

Begin

p:=@i;

pinteger(p)^:=5;

writeln(pinteger(p)^);

p:=@r;

preal(p)^:=3.14;

writeln(preal(p)^);

end.

Рассмотрим запись pinteger(p)^ подробнее. Здесь перед доступом к данным по указателю p мы вначале преобразуем его к указателю на integer, а потом разыменовываем. Поскольку перед обращением к pinteger(p)^ было выполнено присваивание p:=@i, то выражение pinteger(p)^ становится синонимом имени i и может быть использовано как в левой, так и в правой части оператора присваивания.

Гибкость указателей pointer имеет обратную сторону: их применение потенциально опасно и может приводить к ошибкам, причину которых сложно установить. Например, в результате выполнения кода

 

p:=@i;

preal(p)^:=3.14;

мы обратимся к участку памяти, по которому расположено значение целой переменной i, как к вещественной переменной. Поскольку данные вещественного типа занимают в памяти 8 байт (в Delphi), а данные целого типа – всего 4 байта, то последнее присваивание не только изменит 4 байта, занимаемые переменной i, но и запишет оставшиеся 4 байта в область памяти, следующую за переменной i. Поскольку обычно память под глобальные переменные выделяется подряд в порядке их описания, то оставшиеся 4 байта запишутся в область памяти, отведенную под переменную r (именно она описана вслед за i), то есть в результате последнего присваивания значение переменной r будет испорчено. Подобная ошибка не будет выявлена на стадии компиляции, а при выполнении программы проявится не при данном ошибочном присваивании, а позже, когда мы захотим воспользоваться значением переменной r. Именно поэтому рекомендуется либо отказаться от использования бестиповых указателей, либо при их использовании проявлять предельную аккуратность.

Приведем пример, в котором использование указателей pointer оправдано.

Пример. Внутреннее представление значения real.

Зададимся целью посмотреть, как хранится в памяти переменная типа real. Для этого запишем ее адрес в указатель pointer, после чего преобразуем его в указатель на массив байтов и выведем этот массив на экран.

const sz = sizeof(real);

type Arr=array [1..sz] of byte;

PArr=^Arr;

var r: real;

p: pointer;

pb: PArr;

 i: integer;

Begin

readln(r);

p:=@r;

pb:=p;

for i:=1 to sz do

write(pb^[i],’ ’);

end.

Отметим одну особенность операции взятия адреса @. В Delphi ее результат зависит от директивы компиляции {$T} («typed @ operator»). По умолчанию установлена директива компиляции {$T-}: это означает, что результат операции @ имеет тип pointer. Если же установлена директива компиляции {$T+}, то результат операции @ – типизированный указатель, базовым типом для которого выступает тип операнда. Кроме того, можно получить адрес переменной, воспользовавшись стандартной функцией Addr(x), которая всегда возвращает значение типа pointer.

Особенностью операции @ можно воспользоваться, чтобы упростить последнее решение. Для этого поставим в начале программы директиву компиляции {$T-}, что позволит нам заменить присваивания p:=@r; pb:=p на pb:=@r и исключить из программы описание переменной p. Подчеркнем, что в режиме {$T+} последнее присваивание приведет к ошибке несоответствия типов, поскольку @r будет возвращать значение типа ^real. Впрочем, в режиме {$T+} можно воспользоваться явным приведением типов (pb:=PArr(@r)) или функцией Addr (pb:=Addr(r)):

Дата: 2019-02-02, просмотров: 248.