Давно установлена связь между характером явлений зари и условиями погоды. На основании этих связей выработаны местные признаки погоды. Имеются данные о связи между явлениями зари и типами воздушных масс. Например, в холодных прозрачных массах воздуха отмечается зеленый цвет в верхней части зоревого сегмента, а в теплых запыленных массах преобладают красный и оранжевый цвета. Таким образом, наблюдения за зорями могут быть использованы для изучения воздушных масс, а следовательно, и для прогнозов погоды.
Следует упомянуть о явлении зодиакального света. Так называют нежное сияние в виде наклоненного конуса, направленного по эклиптике. Оно наблюдается над солнцем, находящимся под горизонтом, но уже на темном небе, т. е. после конца или до начала астрономических сумерек. Сквозь это сияние просвечивают звезды. В тропических широтах зодиакальный свет наблюдается лучше, чем в умеренных. Считают, что» зодиакальный свет обусловлен рассеянием солнечного света внеземной (метеорной) пылью.
Поглощение и рассеяние вместе ослабляют поток солнечной радиации, проходящий сквозь атмосферу. Радиация ослабляется в атмосфере путем поглощения и рассеяния пропорционально, во-первых, самому потоку радиации (чем больше поток, тем больше будет потеряно радиации при прочих равных условиях) и, во-вторых, количеству поглощающих и рассеивающих частиц на пути лучей. А это количество в свою очередь зависит от длины пути лучей сквозь атмосферу и от плотности воздуха. При этом для каждой длины волны коэффициент пропорциональности будет свой, так как поглощение избирательное, а рассеяние также зависит от длины волны.
Энергетическая освещенность у земной поверхности (интенсивность прямой солнечной радиации - I) определяется законом Бугера, I = I0 pm, где I0 - интенсивность прямой солнечной радиации вне атмосферы, р – коэффициент прозрачности, m – оптическая масса атмосферы (отношение массы атмосферы при косом луче к массе атмосферы при Солнце в зените.) Следовательно, коэффициент прозрачности показывает, какая доля солнечной радиации доходит до земной поверхности при отвесном падении солнечных лучей.
Отношение т, называемое оптической массой атмосферы, зависит от высоты Солнца h над горизонтом. При высоте Солнца более 30° оптическая масса атмосферы будет с достаточным приближением равна cosec h.
Прямой и рассеянный свет создают дневную суммарную освещенность земной поверхности. Если небо сплошь закрыто облаками, то освещенность создается только рассеянным светом. Освещенность прямыми солнечными лучами зависит от высоты Солнца над горизонтом. При изменении высоты Солнца от 5 до 55° прямая освещенность увеличивается примерно в 50 раз, а рассеянная в 5 раз.
Прямая освещенность (Е) описывается экспоненциальным законом, аналогичным закону Бугера для интенсивности прямой солнечной радиации:
E = E0 pm( z) cos( z)
где E0 — освещенность, создаваемая за пределами атмосферы, на поверхности, перпендикулярной солнечным лучам, на среднем расстоянии от Земли до Солнца - световая солнечная постоянная. Она приблизительно равна 135000 лк; при этом сила света Солнца I =3 1027 cв;
р — коэффициент прозрачности для видимой части спектра;
z — зенитное расстояние Солнца.
Из формулы для прямой освещенности видно, что освещенность имеет суточный и годовой ход с максимумами около полудня и в середине лета, а минимумами в зимние месяцы и ночью. В сильной степени освещенность рассеянным светом зависит от облачности, прозрачности воздуха, а также характера подстилающей поверхности, обусловливающей увеличение освещенности за счет отражения света.
Как правило, при безоблачном небе суммарная освещенность больше, чем при наличии облаков. Однако, если наблюдаются облака верхнего и среднего ярусов и не очень плотные, то освещенность рассеянным светом сильно возрастает, а прямым — мало уменьшается, поэтому суммарная освещенность при наличии просвечивающих облаков превышает таковую при их отсутствии. При низкой прозрачности атмосферы прямая освещенность сильно уменьшается, а рассеянная — несколько возрастает; суммарная же освещенность становится ниже, чем при высокой прозрачности воздуха.
Плотные облака сильно снижают суммарную освещенность (иногда до 90—95%) по сравнению с ясным небом Заметное влияние на освещенность оказывает снежный покров. При малых высотах Солнца влияние снежного покрова может привести к увеличению освещенности на 200—250%.
Ночная освещенность. Ночная освещенность земной поверхности (при ясном небе) невелика и, как правило, не превышает освещенности, создаваемой лампой 25 св на расстоянии 335 м.
Эта освещенность создается собственным свечением верхних слоев атмосферы (на высотах 260—270 км), светом звезд (прямым и рассеянным) и зодиакальным светом (свечение космической пыли).
Световая постоянная Луны, т. е. освещенность полной Луной вне атмосферы, при средних расстояниях Земля—Луна и Луна—Солнце, равна 0,291 лк. При средних значениях прозрачности атмосферы полная Луна, находящаяся в зените, дает освещенность плоскости, нормальной к ее лучам, близкую к 0,25 лк.
Дата: 2018-12-28, просмотров: 508.