Систематические наблюдения за температурой воздуха позволяют выявить тенденции в изменении погоды. Правильный суточный ход температуры воздуха — признак сохранения хорошей погоды, нарушение суточного хода - признак приближения плохой погоды. Резкое (снижение температуры днем после ненастной погоды - признак близкого улучшения погоды, повышение температуры воздуха вечером предвещает ухудшение погоды.
Температура воздуха, являясь одним из главнейших метеорологических элементов, оказывает существенное влияние на деятельность флота. При низких отрицательных температурах происходит образование льда на поверхности морских бассейнов или их частей. Все моря России в холодное время года, в той или иной степени покрываются льдом. Льды затрудняют плавание судов, и в ряде случаев суда нуждаются в помощи ледоколов. Кроме того, при низких температурах значительно увеличивается вязкость смазочных материалов и поэтому в зимнее время необходимо переходить на специальные зимние смазки. Температура и влажность, воздуха оказывают влияние и на перевозимые грузы.
Температура воздуха выражается в градусах Цельсия (°С) с точностью до 0,1 °С.
На судах температура воздуха измеряется метеорологическими термометрами (ртутными, спиртовыми) с ценой деления не более 0,5 °С, как правило, в диапазоне от минус 40 до плюс 50 °С, или с помощью психрометров аспирационных МВ-4М.
В частности, для измерения температуры воздуха можно использовать термометры ртутные метеорологические ТМ-4, ТМ-6, ТМ-10, ТМ-14 или спиртовой метеорологический низкоградусный термометр ТМ-9.
При измерениях термометры и психрометры следует размещать по обоим бортам судна в местах, удовлетворяющих в идеале следующим условиям:
- резервуары термометров должны располагаться над водной поверхностью;
- подход к местам установки термометров, психрометров должен быть удобным, термометры и психрометры при этом не должны быть помехой при судовых работах (при швартовых операциях, при креплении и переводе кранцев и т. п.);
- термометры по возможности должны быть защищены от попадания на их резервуары влаги и прямых солнечных лучей.
Обычно метеорологические термометры, психрометры размещают на планширях крыльев ходового мостика, к которым крепятся с помощью кронштейнов. Как исключение допускается размещать термометры на внешней переборке штурманской рубки.
Перед размещением на планширях ртутные и спиртовые термометры помещают в защиту типа ПР-2 с конусовидной оправой для предотвращения попадания на их резервуары солнечных лучей, осадков, морских брызг.
Измерения температуры воздуха следует производить с наветренного борта. Однако в случаях, когда направление кажущегося ветра совпадает с курсом судна или противоположно ему, измерять температуру воздуха можно с любого борта. Если судно находится в дрейфе не менее одного часа и наветренный борт сильно освещен солнцем и при этом чувствуется нагрев палубы, а подветренный борт находится в тени, температуру воздуха следует измерять с подветренного борта.
Подготовка к измерениям. При использовании метеорологических термометров необходимо ежедневно осматривать их; при выявлении неисправностей (разрывов столбика ртути, разрушений или сдвига шкалы, трещин в стеклянном корпусе, попадания влаги внутрь корпуса и пр.) рабочий термометр должен быть заменен на запасной.
Если на судне термометр укреплен „намертво" на переборке штурманской рубки, необходимо 1-2 раза в 5 лет (при стоянке судна на заводе, когда возможен демонтаж термометра) его поверять в поверочных учреждениях Росгидромета или Росстандарта.
При стоянке судна в порту необходимо контролировать показания рабочих термометров по термометру, прошедшему поверку и хранящемуся у портового метеоролога (контроль должен проводиться совместно с портовым метеорологом).
Вся информация о выявленных неисправностях термометров и результатах их контрольных сверок должна быть занесена в журналы КГМ-15 и „Техническое дело СГМС".
Производство измерений. Производство измерений по ртутным, спиртовым метеорологическим термометрам и термометрам психрометра МВ-4М сводится к отсчету их показаний (с точностью до полделения шкалы): сначала отсчитывают десятые доли, затем целые градусы, при этом глаз наблюдателя должен быть на одном уровне с мениском столбика ртути (спирта), как это показано на рисунке 1.2.14.
Рис. 1.2.14. Вид шкалы ртутного термометра при различном положении глаз наблюдателя (1 – глаза ниже мениска ртути; 2 – глаза выше мениска ртути; 3 – правильное положение глаз).
При отсчете ни в коем случае нельзя касаться руками защитных конусов, тем более резервуаров термометров, а также заслонять своим телом термометр от ветра и держать голову слишком близко к термометру во избежание нагрева его дыханием. В ночное время для отсчета следует пользоваться электрическим фонариком, включая свет на короткое время, необходимое для отсчетов. Фонарик следует помещать позади шкалы термометра, так как при этом деления шкалы и ртуть (спирт) в трубке термометра видны более отчетливо. Фонарик должен находиться на таком расстоянии от термометра, чтобы не влиять на его показания.
Обработка результатов измерений. Обработка результатов измерений сводится к введению поправки в отсчет по термометру, взятой из свидетельства о поверке, к записи исправленного отсчета в журнал КГМ-15 и включению его в синоптическую радиограмму в соответствии с требованиями действующего кода KH-01С.
Тема 1.3. Пар в атмосфере
Кругооборот воды в природе. В природе существует непрерывный кругооборот воды. В результате испарения воды с поверхности океанов и материков в атмосферу поступает пар. Подсчитано, что в среднем за год со всей поверхности земного шара испаряется 5,2*1013 т воды, из которых 4,5*1013 т приходится на долю испарения с поверхности океанов и 0,7*1013 т — с поверхности суши. Ветром пар переносится, на большие расстояния в горизонтальном направлении, а благодаря конвекции и турбулентному движению он распространяется по всей толще тропосферы.
Водяной пар в атмосфере конденсируется, и продукты конденсации выпадают в виде осадков на земную поверхность. Общее количество воды, выпадающей из атмосферы в виде осадков за год, примерно в 40 раз больше, чем общее содержание воды в атмосфере. Приведенные цифры показывают, насколько интенсивно происходит обмен влагой между земной поверхностью и атмосферой. Тот факт, что в уровне Мирового океана не происходит каких-либо заметных систематических изменений, говорит о том, что испаряющаяся с земной поверхности вода возвращается обратно в виде осадков и речного стока.
Рис. 1.3. Круговорот воды в природе.
Количество воды, которое имеется в атмосфере, составляет примерно 0,001% мировых запасов воды, причем основная часть ее в атмосфере (95%) находится в виде пара и лишь 5% массы воды приходится на долю облачных частиц (капель воды и кристаллов льда).
Основные черты круговорота воды, или гидрологического цикла, хорошо известны (рис. 1.3). В этом цикле вода последовательно переходит из одного состояния в другое и из одной части окружающей нас среды в другую. Гидрологический цикл можно рассматривать состоящим из серии состояний, или стадий и процессов (рис. 1.4). Если круговорот воды является процессом установившимся, должно соблюдаться равенство между количеством воды, переходящим в какую-либо фазу, и количеством воды, выходящим из нее.
Рис. 1.4. Стадии (обозначены прямоугольниками) и процессы (обозначены кружками) круговорота воды. Числа (в процентах) показывают количество воды, присутствующей в настоящее время на каждой стадии. Скорости процессов даны в 1015 кг/год.
В таком случае время, которое молекула воды находится в среднем в каждом состоянии, то есть время пребывания, можно вычислить, разделив массу воды, находящуюся в этом состоянии, на скорость, с которой происходит вынос или привнес молекул - независимо от происходящих процессов. Результаты таких расчетов, основанных на величинах, приведенных на рис. 1.4 (полагая общую массу воды равной 1400 1018 кг), дают следующие порядки величины времени пребывания молекул в каждом состоянии: в океанах - 4-103 лет, в грунтовых водах, в виде льда, в озерах и реках (вместе)-4-10 лет, в атмосфере (в виде водяного пара и облаков) -10 дней. В действительности же количество воды очень медленно пополняется за счет так называемой ювенильной воды, находящейся в недрах Земли; эта вода поступает на поверхность во время вулканических извержений, из термальных источников и т.д. Часто бывает очень трудно отличить грунтовые воды, включенные в круговорот воды, от ювенильных, что делает подсчеты количества грунтовых вод, приведенные на рис. 1.4, весьма ненадежными.
Испарение.
Испарение - это процесс, в результате которого вода из океана или с поверхности Земли поступает в атмосферу. Тот же процесс, при котором испарение происходит с поверхности зеленых растений, называется транспирацией, а если молекулы воды переходят в газообразное состояние непосредственно с поверхности льда, то такой процесс называется возгонкой (сублимацией). Пары воды, которые в результате этих процессов пополняют количество газов, находящихся в атмосфере, увеличивают атмосферное давление.
Первая из этих характеристик называется температурой точки росы. Она определяется как температура, при которой некоторый объем воздуха, охлаждающийся при постоянном давлении, достигает состояния насыщения по отношению к воде.
Аналогичная температура относительно поверхности льда называется точкой замерзания. Чтобы в примере, приведенном на рис. 1.5, найти точку росы пробы воздуха А, находящейся при температуре 25°С и давлении паров 20 мб, нужно из точки А провести горизонтальную линию до пересечения с кривой и в точке В снять значение температуры, равное 17,5°С.
Другая из этих характеристик - это относительная влажность, которая определяется следующим образом:
U = 100% e/ew (3.1)
В приведенном выше примере е равно 20 мб, а еw, (упругость насыщенных паров при температуре воздуха 25°С) - 31,5 мб (точка С), откуда U = 100% 20/31,5 = 63,5%. Относительная влажность возрастает не только при увеличении содержания водяного пара, но и при уменьшении температуры, если при этом количество водяных паров остается неизменным. Таким образом, суточные колебания относительной влажности часто отражают суточные колебания температуры воздуха.
Скорость испарения и испаряемость. Испарение обычно характеризуется массой испарившейся жидкости. Эта величина, рассчитанная на единицу поверхности за единицу времени, дает скорость испарения Vисп, которая выражается в г/см2).- Расчеты показывают, что непосредственно у поверхности воды упругость пара равна упругости насыщения Е. Дальнейшее распространение водяного пара в атмосфере определяется. молекулярной и турбулентной диффузией..
В конечном итоге скорость испарения зависит от, температуры испаряющей поверхности t, дефицита влажности d. вычисленного с учетом этой температуры, и скорости ветра w
В метеорологии принято определять среднюю, скорость испарения за длительный промежуток времени: сутки, декаду, месяц, сезон или год, выражая ее высотой испарившегося слоя воды в миллиметрах или сантиметрах.
Скорость испарения увеличивается с повышением температуры благодаря росту упругости насыщения и, следовательно, дефицита влажности d. Поскольку испарение идет при большой затрате тепла, оно при прочих равных условиях больше в теплых районах, чем в холодных, в теплое время суток больше, чем в холодное. Ветер способствует удалению молекул водяного пара из слоя воздуха, прилегающего к поверхности воды. Очевидно, что чем больше скорость ветра, тем больше и испарение.
Максимально возможное (не лимитируемое запасами воды) испарение в данной местности при существующих в ней атмосферных условиях называется испаряемостью. Очевидно, что фактическое испарение может быть либо равным, либо меньше испаряемости. Например, в пустынях испаряемость велика, а испарение может быть близко к нулю. В Сахаре испаряемость в год равна 4000 мм, в районе Ташкента—2000 мм в год; фактическое испарение в этих районах ничтожно мало. .В океане испарение равно испаряемости.
Наиболее надежные данные величины испарения имеются для , поверхности океанов. Можно считать, что с океанической поверхности испаряется в среднем за сутки в экваториальной зоне 3—4 мм, а в умеренных широтах 1—2 мм. В среднем для всего земного шара испарение примерно равно 100 см в год.
Конденсация. Когда водяной пар в атмосфере достигает насыщения, начинается процесс конденсации (образование капель воды) или процесс сублимации (непосредственное образование кристаллов льда из водяного пара).
Конденсация и сублимация водяного пара происходят как в атмосфере, так и на земной поверхности и расположенных на ней предметах. Конденсация начинается, когда температура понизится до точки росы τ. Если τ <0°С, то может произойти не только конденсация, но и сублимация. Однако в атмосфере сублимация происходит лишь при очень низких температурах, ниже —40°С. При более высокой температуре пар в атмосфере конденсируется, образуя переохлажденные капли.
Ядра конденсации. Обычно в атмосфере в том или ином количестве во взвешенном состоянии находятся аэрозоли - мельчайшие твердые и жидкие частички, на которых и происходит и конденсация водяного пара. Эти частички и называются ядрами конденсации. В чистом воздухе, лишенном всяких примесей, конденсация водяного пара на наступает даже при перенасыщении его в несколько раз.
Ядрами конденсации над океанами в основном являются частички солей, которые попадают в воздух в больших количествах при испарении брызг морской воды в воздухе. Еще большее число ядер конденсации попадает в атмосферу при распылении почвы,, а также в виде продуктов горения.
Ядрами конденсации над океанами в основном являются частички солей, которые попадают в воздух в больших количествах при испарении брызг морской воды в воздухе. Еще большее число ядер конденсации попадает в атмосферу при распылении почвы, а также в виде продуктов горения.
Частицы дыма и твердые частицы пыли, выбрасываемые промышленными предприятиями, уменьшают видимость как непосредственно, так и косвенно в связи с тем, что они представляют собой гигроскопические ядра, способствующие конденсации. Этот густой смешанный туман называется смогом.
Туманы.
При конденсации или сублимации водяного пара в воздухе образуются мельчайшие капли воды или ледяные кристаллы. Скопление таких частиц непосредственно у земной поверхности называется туманом, если дальность видимости меньше -1 км, или туманной дымкой, если дальность видимости меньше 10 км.
Туманы представляют серьезную угрозу для мореплавания. Они относятся к часто повторяющимся явлениям, поэтому изучение условий их образования, а также географическое распределение имеют большое практическое значение.
Содержащиеся в воздухе капли воды и кристаллы льда уменьшают его прозрачность, и поэтому дальность видимости в тумане может быть очень малой. В зависимости от интенсивности тумана или дымки по условиям видимости различают:
Дата: 2018-12-28, просмотров: 1368.