ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ПАМЯТИ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Эффективность приспособительного поведения животных и успех разумной деятельности человека в значительной мере зависят от того, в какой мере животные используют свой жизненный опыт, а человек — полученные ранее знания для того, чтобы принимать правильные решения и избегать ошибочных. Эти знания извлекаются из памяти. Хотя в ее основе лежит нейрофизиологический механизм образования временных связей, понятие памяти имеет более широкий смысл. Рассмотренные в гл. 2 свойства и механизмы 0бразования условной связи раскрывают лишь одну начальную часть явлений памяти, объясняют, что означает запомнить. Другая, пожалуй, наиболее важная часть явлений памяти состоит в удержании на долгое время образовавшихся нервных связей, в способности помнить. Нередко под памятью подразумевают именно эту способность. Однако для того, чтобы воспользоваться полученной ранее полезной информацией, необходимо не только зафиксировать ее в новых нервных связях, не только сохранить эти связи, но и иметь возможность воспроизвести их в нужный момент, т.е. вспомнить.

Различия механизмов осуществления этих проявлений памяти наглядно демонстрируются врачебными наблюдениями за больными, у которых разные поражения мозга вызывали различные нарушения памяти. Например, описаны случаи, когда человек запоминает с трудом, но помнит долго или может запомнить лишь на очень короткое время или с большим трудом вспоминает то, что он легко запомнил.

Таким образом, понятие памяти включает в себя совокупность процессов фиксации, хранения и последующего считывания информации, получаемой организмом на протяжении его жизни.

 

Краткосрочная память

 

Давно замечено, что при некоторых заболеваниях мозга теряется способность запоминать события, происходящие во время болезни, хотя все бывшее ранее больной хорошо помнит. Эти явления в резкой форме были вначале обнаружены и описаны при тяжелой форме алкоголизма (С.С. Корсаков, 1880). Больной не был в состоянии запомнить происходящие события, но мог помнить, что происходило с ним раньше. Такую потерю памяти на недавние события наблюдали также у людей, переживших сотрясение мозга, при его очаговых поражениях, особенно в области височных долей, затрагивающих гиппокамп. Психологи отмечали сходные явления забывания событий, предшествовавших нервному потрясению. При этом память на все более давние события полностью сохранялась.

Такие явления ретроградной амнезии, т.е нарушения памяти на события, произошедшие незадолго до воздействия на мозг, при сохранности памяти на прежние события означают разные свойства памяти. На основании этих фактов сделано заключение о двух видах памяти: краткосрочной и долгосрочной (Д. Хебб, 1949).

Нарушения краткосрочной памяти типа ретроградной амнезии оказалось возможным воспроизвести в экспериментах на животных. Для этого достаточно было сразу после обучения подвергнуть мозг сильному воздействию и только что приобретенное знание исчезало, хотя ранее приобретенные навыки сохранялись. В экспериментах такими воздействиями были различные фармакологические средства, наркотики, переохлаждение мозга, нарушение его кислородного снабжения и другие средства. Однако чаще всего применяли электрическое раздражение мозга, вызывающее судорожные припадки.

На рис. 20 приведены результаты опыта, в котором у мышей вырабатывали условный оборонительный рефлекс избегания выхода на площадку, находящуюся под напряжением.

 

Получив удар током, мышь избегала выходить на эту площадку. Учитывали поведение мыши в первые 30 с после выхода на площадку. Как видно из рис. 20, если эфирный наркоз был дан сразу или на протяжении не более 10 мин после удара током на площадке, то условный рефлекс ее избегания был нарушен, мышь продолжала выбегать на площадку. Если наркоз был дан позже, спустя 16–20 мин, то он разрушал рефлекс не полностью, а наркотизация через 24 мин вообще не влияла на него.

 

Многие эксперименты показывали возможность избирательно выключать кратковременную память, не нарушая долговременную, и избирательно воздействовать на долгосрочную память, не нарушая краткосрочную. Такое действие оказывают, например, некоторые антибиотики, угнетающие синтез белка. Из этих данных был сделан вывод, что краткосрочная и долгосрочная память имеют разную природу и регулируются разными механизмами. Однако многие воздействия, выключающие краткосрочную память, как, например, нанесение на поверхность мозга раствора хлористого калия, нарушали и долговременную память. Вместе с тем описаны случаи, когда ретроградная амнезия через некоторое время проходила сама или снималась действием тока более слабого, чем применяемый в качестве подкрепления при выработке исследуемого рефлекса.

 

Рис. 20. Влияние наркоза на закрепление у мышей рефлексов избегания выхода на площадку, находящуюся под напряжением (по И. Абт и др.):

белыми столбиками изображено проявление рефлекса до наркотизации, заштрихованными — после наркотизации в разные сроки; остальные объяснения см. в тексте

 

 

На основании опытов с обезьянами было высказано предположение, что в условно-рефлекторной деятельности проявляются оба вида памяти: при отсроченных условных рефлексах — преимущественно краткосрочная, при следовых условных рефлексах — долгосрочная. Поэтому более вероятно, что механизмы краткосрочной и долгосрочной памяти тесно связаны между собой и являются последовательными этапами единого процесса, где памятный след, менее устойчивый на первом этапе, на втором этапе становится прочным. О природе двух видов памяти высказывают разные предположения, но, несмотря на интенсивные исследования, единой общепризнанной теории памяти пока не существует.

Возможные механизмы краткосрочной памяти. Наиболее распространено предположение, что краткосрочная память реализуется в виде многократной циркуляции потоков импульсов по замкнутым цепям нервных клеток. Основанием для такой гипотезы реверберации возбуждения были морфологические данные о наличии в сетях нейронов множественных соединений, образующих по петлям обратных связей круговые пути (Р. Лоренте де Но, 1934). Сочетания условного и безусловного раздражений активируют эти пути и многократное возбуждение нервных клеток, по которым протекают потоки импульсов, постепенно вызывает в них стойкие изменения, образующие долгосрочную память. Действительно, все воздействия, нарушающие краткосрочную память, прерывают возникающую циркуляцию потоков импульсов по замкнутым нервным путям.

Однако дальнейшие исследования показали, что в круговых путях нервных сетей находятся не только возбуждающие, но и тормозящие клетки, которые препятствуют «зацикливанию» циркуляции импульсов. На рис. 21 показана такая схема сети, в которой клетка 1 с клеткой могла бы образовать круг реверберации импульсов, обусловливающей ритмическое возбуждение клетки Б. Но достижение порога возбуждения тормозящей клетки разрывает этот круг, затормозив клетку 1А.

 

Рис. 21. Нервная цепь с замкнутыми нейронными цепями, по которым могут циркулировать потоки импульсов (по Э. Кенделу):

1 — корковый нейрон, получающий афферентные сигналы, и — промежуточные нейроны, 2 — эфферентный нейрон; белыми треугольниками изображены возбуждающие синапсы, черными — тормозящий, стрелками показано направление движения потоков импульсов

 

 

Краткосрочная память не требует для своей реализации синтеза информационных (матричных) молекул РНК и ДНК. Она и не могла бы обеспечиваться этими биохимическими процессами как генетическая память, поскольку включение в полимер ДНК или РНК нуклеотидов происходит в сотни и тысячи раз медленнее, чем это необходимо для запечатления в них полной информации о текущих событиях. Вместе с тем при любом понимании ее природы, в том числе и реверберационном, речь идет о протекании потоков импульсов по новым для них путям, т.е. о временной синаптической проводимости.

Для объяснения механизма синаптической проводимости была предложена гипотеза о взаимодействии медиатора ацетилхолина с рецепторными белками постсинаптической мембраны и Na+, K+-АТФ-азой при разных концентрациях ионов Na и Ca. При интенсивной импульсации выброшенный из везикул пресинаптической мембраны ацетилхолин связывается с рецепторными белками постсинаптической мембраны, подавляет деятельность ионных насосов, деполяризует мембрану и выключает Na+, K+-АТФ-азу. Однако возникающие при этом потенциалы возбуждения и уменьшение отношения Na+ и K+ приводят к высвобождению ацетилхолина и последующему разрушению его холинэстеразой, что может восстанавливать активность Na+, К+-АТФ-азы на более высоком уровне.

Временное повышение синаптической проводимости связывают также с высвобождением Ca2+ под действием нервных импульсов в пресинаптических окончаниях, который вызывает усиленное сокращение везикул и выбрасывание медиатора, или с повышенной чувствительностью белков деполяризованной мембраны к протеолитическим ферментам, делающим ее более проходимой для медиатора. В пользу последнего предположения свидетельствует возрастание активности протеаз в ткани мозга животных при выработке условного рефлекса.

Исходя из результатов электрофизиологических исследований было высказано мнение, что краткосрочная память образуется за счет посттетанической потенциации, поддерживаемой реверберующими потоками импульсов. Посттетанической потенциацией, или посттетаническим облегчением, называют увеличение числа проходимых синапсов после ритмического раздражения пресинаптических волокон. На то, что это явление зависит от изменений в их окончаниях, а не в постсинаптических структурах, указывает отсутствие такого эффекта при антидромной стимуляции (рис. 22). Из рис. 22 видно, что в данном случае облегчение длится около двух минут и что антидромная стимуляция оказывается безрезультатной.

 

Рис. 22. Посттетаническое временно́е облегчение проведения через звездчатый ганглий кошки (по М. Ларраби, Д. Бронк):

I — ортодромная стимуляция, II — антидромная стимуляция, объяснение см. в тексте

 

 

Несмотря на различия предположений о природе краткосрочной памяти, их объединяет рассмотрение механизма памяти как возникновения непродолжительных обратимых физико-химических свойств мембран и динамики медиаторов в синапсах, временно перестраивающих поведение нервных сетей. Эти изменения неизбежно связаны со сложной цепочкой далеко идущих, сравнительно более стойких перестроек метаболизма нервной клетки. Поэтому кратковременная память может оставлять более длительный скрытый след, основе которого в некоторых случаях она способна восстанавливаться после действия амнестического агента. Углубление и структурно-метаболическое закрепление этих следов, по-видимому, является механизмом перехода краткосрочной памяти в долгосрочную.

 

Долгосрочная память

 

В отличие от краткосрочной долгосрочная память хранит следы пережитых событий неопределенно долго. Собственно она и является носителем жизненного опыта животного; знаний, приобретенных человеком. О субстрате и способе закрепления долгосрочных памятных следов существуют разные мнения.

Долгосрочная память как возникновение новых межклеточных связей и улучшение проведения по уже существующим связям. Не вызывает сомнений, что в основе всякого обучения лежит процесс проторения путей возбуждения. Наглядной иллюстрацией того, что в результате обучения потоки нервных импульсов легче и быстрее преодолевают синаптическую задержку, может служить модельный опыт с тараканом: после ампутации передних лапок, которыми он чистит усики, таракан обучается пользоваться для этой цели задними лапками. При этом время синаптической задержки моторных импульсов к задним лапкам резко уменьшается (рис. 23).

Исследование динамики активности нейронов виноградной улитки при выработке оборонительного условного рефлекса показало, что повышение эффективности синапсов происходит на входах командных нейронов, реализующих защитные движения.

При выработке условного рефлекса постановки лапы кошки на подставку исследовали реакции ЭЭГ и нейронной активности в моторной коре. Наблюдаемое при этом их единообразие в случае применения различных по характеру и интенсивности условных раздражителей привело к заключению, что сигнал лишь запускает программу ответного двигательного акта. Это происходит, когда наступает повышение эффективности синапсов на входах нейронов — генераторов команд.

 

Рис. 23. Укорочение времени прохождения через метаторакальный ганглий таракана нервных импульсов, приводящих в движение его задние лапки, которыми он научился чистить усики после ампутации передних лапок (по Д. Люко, А. Аранда):

I — до ампутации, II —через 12 дней после ампутации, точки под записями — момент прихода импульсов к ганглию, двухфазные потенциалы зарегистрированы от эфферентных волокон данного ганглия

 

 

Давно высказанное предположение, что памятный след закрепляется «прорастанием» дополнительных нервных окончаний (Р. Кахал, 1911), позже получило новые подтверждения. Оказалось, что так называемые шипики, несущие синапсы на дендритах корковых клеток, появляются именно в возрасте, когда развивается условно-рефлекторная деятельность. Дополнительные указания на роль шипиков в мехаизмзах памяти дали эксперименты, показавшие интенсивное развитие их синаптического аппарата у животных в результате выработки условных рефлексов. К такому пониманию природы долгосрочной памяти приводит и концепция участия генетического аппарата в пластическом обеспечении функций нервных клеток, согласно которой их интенсивная деятельность при обучении вызывает усиление синтеза белка и процессов роста, в частности, образующих новые синаптические связи. Наконец, зависимость количества синапсов (по показателям электронной микроскопии) от интенсивности функционирования нервных механизмов продемонстрирована в экспериментах с повышением активности синапсов путем предъявления сложных задач или ее снижения путем сенсорной депривации.

По другим предположениям долгосрочная память реализуется облегчением передачи импульсов по существующим синапсам. Это может быть достигнуто стойкими изменениями структуры и свойств синапсов (табл. 3).

Эффективность передачи возбуждения в синапсах в значительной мере зависит от их функционального состояния, определяемого уровнем деятельности. Показано, что усиленное использование синапсов повышает их проходимость для импульсных потоков. При объяснении этого явления учитывается, что ничтожные просветы синаптических щелей соизмеримы с размерами макромолекул мембран, образующих их стенки. Поэтому многократная конвергенция импульсов условного и безусловного раздражителей на синапсах центрального нейрона, вызывая физико-химические изменения его мембран, может, в конечном итоге, сделать синаптическую щель более преодолеваемой.

Физико-химические изменения мембран, возникающие при стойком сдвиге их поляризации, могут служить основой для формирования памятных следов. Такие сдвиги поляризации вопроизведены в экспериментах с созданием зон повышенной возбудимости в коре при помощи постоянного тока и, видимо, имеют место в естественных условиях возникновения доминантных очагов. Опытным путем показано, что создаваемое в доминантном очаге коры состояние возбудимости подпорогового уровня под действием приходящего афферентного возбуждения может достичь порога проявления ответной реакции. Образуется суммационный рефлекс, который при закреплении следов проторения новых путей становится настоящим условным рефлексом. Характерная особенность такого рефлекса состоит в том, что по показателям нейронной активности он протекает в две фазы: торможения и последующей отдачи. Образование таких временных связей происходит преимущественно в нейронах нижних слоев коры.

Одним из механизмов повышения эффективности синапсов могут быть процессы, проявляющиеся в так называемой посттетанической потенциации (Д. Ллойд, 1949). После раздражения афферентных путей синаптическая проводимость мотонейронов спинного мозга остается повышенной в течение 7 мин. Раздражением гиппокампа удавалось продлить такое состояние до нескольких часов. Показано, что гиппокампальная посттетаническая потенциация сопровождается увеличением фокальных потенциалов и укорочением их латентного периода, особенно выраженных, если тетанизации подвергались структуры со свойствами самостимуляции.

 

Таблица 3. Возможные механизмы устойчивого повышения проводимости в синапсах (по С. Барондес в модификации И.П. Ашмарина)

 

Область изменений в синапсе

Дата: 2018-12-28, просмотров: 276.